• Title/Summary/Keyword: Velocity Vector Distribution

Search Result 71, Processing Time 0.027 seconds

Numerical Study of the Characteristics of Internal Flow Including an Air Core in a Cylindrical Tank (공기기둥이 형성된 원통 용기의 내부유동 특성에 관한 수치해석 연구)

  • Park, Il-Seouk;Son, Jong-Hyeon;Sohn, Chang-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.269-276
    • /
    • 2012
  • An air core is generated during draining through an axisymmetrically placed circular orifice after rotating a cylindrical tank filled with a liquid. If an air core is generated, the draining flow rate decreases and the draining time increases. In this study, the process of the formation of the air core and internal flow characteristics in a cylindrical tank are studied by numerical methods. Several methods are used in the analysis, and the results are compared with experimental results to obtain the appropriate scheme. Axial, radial, and swirl velocity profiles on a variety of heights are shown graphically, and the internal flow structure is analyzed from the velocity profiles, the vector plot, and the stream function distribution.

A Study on Three-Dimensional Flow Analysis and Noise Source of Sirocco Fan (시로코 팬의 3차원 유동해석 및 소음원에 관한 연구)

  • Kang, Jeong-Seok;Kim, Jin-Taek;Lee, Cheol-Hyung;Baek, Byung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.896-902
    • /
    • 2018
  • This study examined the flow and noise inside a sirocco fan for ventilation as a commercial program. To confirm only the location and power of the noise source, flow analysis was performed with steady state flow analysis. Through flow analysis, the flow was observed in the sirocco fan and the velocity vector. The pressure distribution inside was observed with contours. From the results of steady analysis, the position and size of the noise source could be seen using the 'Curle surface acoustic power' and 'Proudman acoustic power'. The Curle surface acoustic power can be used to observe the noise from the surface. The Proudman acoustic power can be used to detect noise generated in the flow region because the position and size of the noise source generated inside the sirocco fan can be seen only in the steady state. Therefore it is necessary to further analyze the unsteady state to check the frequency of the noise generated. This study provides basic data for improving the performance of the Sirocco fan and reducing the noise.

Numerical Analysis of a Tip Leakage Vortex in an Axial Flow Fan (축류홴 익단누설와류의 수치적 해석)

  • Jang, Choon-Man;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.1 s.22
    • /
    • pp.36-44
    • /
    • 2004
  • Three-dimensional vortical flow and separated flow topology near the casing wall in an axial flow fan having two different tip clearances have been investigated by a Reynolds-averaged Navier-Stokes (RANS) flow simulation. The simulation shows that the tip leakage vortex formed close to the leading edge of the blade tip on suction side grows in the streamwise direction. On the casing wall, a separation line is formed upstream of the leakage vortex center due to the interference between the leakage vortex and main flow. The reverse flow is observed between the separation line and the attachment line generated downstream of the trailing edge, and increased with enlarging tip clearance. The patterns of a leakage velocity vector including a leakage flow rate are also analyzed according to two tip clearances. It is noted that the understanding of the distribution of a limiting streamline on the casing wall is very important to grasp the characteristics of the vortical flow in the axial flow fan.

A Study on the Fluid Flow with Ultrasonic Forcing by PIV Measurement - On the Incident Angle and Reflector - (초음파가 가진된 유체유동의 PIV계측에 의한 연구 - 입사각과 반사재료를 중심으로 -)

  • Ju, E.S.;Lee, Y.H.;La, W.J.;Park, Y.H.
    • Journal of Power System Engineering
    • /
    • v.4 no.4
    • /
    • pp.32-40
    • /
    • 2000
  • A study on the fluid flow with ultrasonic forcing was carried out to get the enhancement of turbulence by laying emphasis on the ultrasonic incidence angles and reflectors. A large water tank was made of the transparent acrylic plates and city water of $25^{\circ}C$ was used as working fluid. 7 angles ($30^{\circ},\;45^{\circ},\;60^{\circ},\;90^{\circ},\;120^{\circ},\;135^{\circ},\;150^{\circ}$) as the ultrasonic incidence angle and 4 materials (wood, acryl, glass, iron) as the reflector were selected arid experiments for the above were made. The velocity vector distribution, kinetic energy and turbulence intensity of the turbulence flow fields enhanced by ultrasonic forcing were measured, compared and discussed by using the PIV measurement which was possible to measure the velocities of simultaneous multipoints. In results, it was cleared that the incidence angle of ultrasonic and material of reflector influenced the enhancement of turbulence.

  • PDF

3-D characteristics of conical vortex around large-span flat roof by PIV technique

  • Sun, Huyue;Ye, Jihong
    • Wind and Structures
    • /
    • v.22 no.6
    • /
    • pp.663-684
    • /
    • 2016
  • Conical vortices generated at the corner regions of large-span flat roofs have been investigated by using the Particle Image Velocimetry (PIV) technique. Mean and instantaneous vector fields for velocity, vorticity, and streamlines were measured at three visual planes and for two different flow angles of $15^{\circ}$. The results indicated that conical vortices occur when the wind is not perpendicular to the front edge. The location of the leading edge corresponding to the negative peak vorticity and maximum turbulent kinetic energy was found at the center of the conical vortex. The wind pressure reaches the maximum near the leading edge roof corner, and a triangle of severe suctions zone appears downstream. The mean pressure in uniform flow is greater than that under turbulent flow condition, while a significant increase in the fluctuating wind pressure occurs in turbulent streams. From its emergence to stability, the shape of the vortex cross-section is nearly elliptical, with increasing area. The angle that forms between the vortex axis and the leading edge is much smaller in turbulent streams. The detailed flow structures and characteristics obtained through FLUENT simulation are in agreement with the experimental results. The three dimensional (3-D) structure of the conical vortices is clearly observed from the comprehensive arrangement of several visual planes, and the inner link was established between the vortex evolution process, vortex core position and pressure distribution.

The Capacitive Deionization Module Design and Its Analysis by Computational Flow Dynamics (CDI 모듈 설계와 전산유동해석)

  • Nam, Ki Jin;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.29 no.5
    • /
    • pp.284-291
    • /
    • 2019
  • In this study, for the improvement of flow pattern with the CDI module that had the larger electrodes, it was designed with the rectangular type which is gradually wider from the inlet. Based on this, both the flow pattern of feed solution and dead zone were observed and the internal pressure, streaming line and velocity vector distribution were analyzed through the computational flow dynamics and compared with the experimental results. For all flow rates of 10, 20, 30 mL/min, there were no dead zones and the flow patterns were maintained constant. Therefore, it may be possible that the larger electrodes are applied to the CDI process.

Comparison of Data Measured by Doppler Instruments at 1,550 nm and 23.2 cm Wavelengths (1,550 nm와 23.2 cm 파장의 도플러 측기 관측자료 비교)

  • Geon-Myeong Lee;Byung-Hyuk Kwon;Kyung-Hun Lee;Zi-Woo Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1041-1048
    • /
    • 2023
  • Wind LiDAR and Wind Profiler are devices that produce continuous vertical distribution of wind vector in high-resolution data, and their use has recently been increasing. Although the observation and data processing methods of the two devices are similar, differences in wind detection accuracy may occur depending on weather and operation settings. introduce the characteristics of the two instruments and wind calculation methods, and apply the latest instrument verification standards to evaluate their accuracy by comparing them with the wind observed with a radiosonde. Accordingly, a new direction for performance verification following the introduction of equipment and additional necessary complements are presented.

Solar concentrator optimization against wind effect

  • Sayyed Hossein Mostafavi;Amir Torabi;Behzad Ghasemi
    • Wind and Structures
    • /
    • v.38 no.2
    • /
    • pp.109-118
    • /
    • 2024
  • A solar concentrator is a reflective surface in the shape of a parabola that collects solar rays in a focal area. This concentrator follows the path of the sun during the day with the help of a tracking system. One of the most important issues in the design and construction of these reflectors is the force exerted by the wind. This force can sometimes disrupt the stability of the concentrator and overturn the entire system. One of the ways to estimate the force is to use the numerical solution of the air flow in three dimensions around the dish. Ansys Fluent simulation software has been used for modeling several angles of attack between 0 and 180 with respect to the horizon. From the comparison of the velocity vector lines on the dish at angles of 90 to - 90 degrees, it was found that the flow lines are more concentrated inside the dish and there is a tendency for the flow to escape around in the radial direction, which indicates the presence of more pressure distribution inside the dish. It was observed that the pressure on the concave surface was higher than the convex one. Then, the effect of adding a hole with various diameter of 200, 300, 400, 500, and 600 mm on the dish was investigated. By increasing the diameter up to the optimized size of 400 mm, a decrease in the maximum pressure value in the pressure distribution was shown inside the dish. This pressure drop decreased the drag coefficient. The effect of the hole on the dish was also investigated for the 30-degree angled dish, and it was found that the results of the 90-degree case should be considered as the basis of the design.

Uniformity of Temperature in Cold Storage Using CFD Simulation (CFD 시뮬레이션을 이용한 농산물 저온저장고내의 온도분포 균일화 연구)

  • Jeong, Hoon;Kwon, Jin-Kyung;Yun, Hong-Sun;Lee, Won-Ok;Kim, Young-Keun;Lee, Hyun-Dong
    • Food Science and Preservation
    • /
    • v.17 no.1
    • /
    • pp.16-22
    • /
    • 2010
  • To maintain the storage quality of agricultural products, temperature uniformity during cold storage, which is affected by fan flow rate and product arrangement, is important. We simulated and validated a CFD (Computational Fluid Dynamics) model that can predict both airflow and temperature distribution in a cold storage environment. Computations were based on a commercial code (FLUENT 6.2) and two turbulence models. The standard k-$\varepsilon$ model and the Reynolds stress model (RSM) were chosen to improve the accuracy of CFD prediction. To obtain comparative data, the temperature distribution and velocity vector profiles were measured in a full-scale cold storage facility and in a 1/5 scale model. The agricultural products domain in cold storage was modeled as porous for economical computation. The RSM prediction showed good agreement with experimental data. In addition, temperature distribution was simulated in the cold storage rooms to estimate the uniformity of temperature distribution using the validated model.

Experimental Study of Inlet/Outlet Flow Characteristics in Tube-side of Shell and Tube Heat Exchanger (원통-다관형 열교환기의 다관측 입출구 유동 특성의 실험적 연구)

  • Tu, Xin Cheng;Wang, Kai;Park, Seung-Ha;Kim, Hyoung-Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.7
    • /
    • pp.581-588
    • /
    • 2014
  • The inlet/outlet flow in the tube-side of the shell and tube heat exchanger was experimentally measured to investigate the effect of the porous baffle on uniform flow distribution. A 1/3rd scale-downed model of a heat exchanger was used and particle image velocimetry was applied for measuring the instantaneous velocity vector fields. The absolute errors in the flow rate were calculated and compared for the tube-side with and without the porous baffle, by varying the flow rate from 60 to 90 LPM. The results revealed that the porous baffle can improve flow uniformity and reduce the absolute error in the flow rate of the model with the baffle by about 74%, compared to that without the baffle. This result can be used for improving the performance and design of the shell and tube heat exchanger.