DOI QR코드

DOI QR Code

The Capacitive Deionization Module Design and Its Analysis by Computational Flow Dynamics

CDI 모듈 설계와 전산유동해석

  • Nam, Ki Jin (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Rhim, Ji Won (Department of Advanced Materials and Chemical Engineering, Hannam University)
  • 남기진 (한남대학교 화공신소재공학과) ;
  • 임지원 (한남대학교 화공신소재공학과)
  • Received : 2019.10.28
  • Accepted : 2019.10.30
  • Published : 2019.10.31

Abstract

In this study, for the improvement of flow pattern with the CDI module that had the larger electrodes, it was designed with the rectangular type which is gradually wider from the inlet. Based on this, both the flow pattern of feed solution and dead zone were observed and the internal pressure, streaming line and velocity vector distribution were analyzed through the computational flow dynamics and compared with the experimental results. For all flow rates of 10, 20, 30 mL/min, there were no dead zones and the flow patterns were maintained constant. Therefore, it may be possible that the larger electrodes are applied to the CDI process.

본 연구에서는 대면적을 지니는 CDI 모듈의 흐름 향상을 위하여 유체가 들어가는 유입구로부터 면적이 증가하는 직사각형 형태의 유로를 설계하였다. 이를 바탕으로 설계된 모듈 형태에 대해 공급수의 흐름성과 사영역의 유무를 파악하였고 CFD 전산 유체 역학 프로그램을 통해 유로 내의 내부 압력, 유선 그리고 속도 벡터 분포를 분석하였으며 실제 흐름 관측과 CFD 프로그램을 비교 분석하였다. 실험 결과 모든 유속 10, 20, 30 mL/min에서 유로 내 사영역이 거의 발생하지 않았으며 공급수의 흐름성도 일정하게 유지되어 추후 대면적을 가지는 CDI 공정에 적용이 가능할 것이라 판단된다.

Keywords

References

  1. J. Ma, C. He, D. He, C. Zhang, and T. D. Waite, "Analysis of capacitive and electrodialytic contributions to water desalination by flow-electrode CDI", Water Res., 144, 296 (2018). https://doi.org/10.1016/j.watres.2018.07.049
  2. W. S. Yun, S. I. Cheong, and J. W. Rhim, "Effect of ion exchange capacity on salt removal rate in membrane capacitive deionization process", Membr. J., 28, 332 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.5.332
  3. C. Zhang, D. He, J. Ma, W. Tang, and T. D. Waite, "Faradaic in capacitive deionization (CDI): A review", Water Res., 128, 314 (2018). https://doi.org/10.1016/j.watres.2017.10.024
  4. G. L. Andres, T. Mizugami, and Y. Yoshihara, "Simulation of an electric behavior of the CDI system", Desalination, 419, 211 (2017). https://doi.org/10.1016/j.desal.2017.06.011
  5. L. Chang, J. Lia, X. Duana, and W. Liua, "Porous carbon derived from metal-organic framework (MOF) for capactive deionization electrode", Electrochim Acta, 176, 956 (2015). https://doi.org/10.1016/j.electacta.2015.07.130
  6. Y. J. Song, W. S. Yun, and J. W. Rhim, "Studies of performance and enlarged capacity through multi- stages stacked module in membrane capacitive deionization process", Membr. J., 27, 449 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.5.449
  7. B. G. Jeon, H. C. NO, and J. I. Lee, "Development of a two-dimensional coupled-implicit numrical tool for the optimal design of CDI electrodes", Desalination, 274, 226 (2011). https://doi.org/10.1016/j.desal.2011.02.021
  8. C. Wang, L. Chen, S. Liu, and L. Zhu, "Nitrite desorption from activated carbon fiber during capacitive deionization (CDI) and membrane capacitive deionization (MCDI)", Colloids Surf. A Physicochem. Eng. Asp., 559, 392 (2018). https://doi.org/10.1016/j.colsurfa.2018.09.072
  9. C. O. Park, J. S. Oh, and J. W. Rhim, "Preparation of carbon electrodes using activated carbon fibers and their performance characterization for capacitive deionization process", Member. J., 28, 272 (2018).
  10. Z. Chen, H. Zhang, C. Wu, Li. Luo, C. Wang, S. Huang, and H. Xu, "A study of the effect of carbon characteristics on capacitive deionization (CDI) performance", Desalination, 433, 68 (2018). https://doi.org/10.1016/j.desal.2017.11.036
  11. R. L. Zornitta and L. A. M. Ruotolo, "Simultaneous analysis of electrosorption capacity and kinetics for CDI desalination using different electrode configurations", Chem. Eng. J., 332, 33 (2018). https://doi.org/10.1016/j.cej.2017.09.067
  12. Y. Oren, "Capacitive deionization (CDI) for desalination and water treatment - Past, present and future (a review)", Desalination, 228, 10 (2008) https://doi.org/10.1016/j.desal.2007.08.005
  13. K. Laxman, A. Husain, A. Nasser, M. A. Abri, and J. Dutta, "Tailoring the pressure drop and fluid distribution of a capacitive deionization device", Desalination, 449, 111 (2019). https://doi.org/10.1016/j.desal.2018.10.021
  14. M. E. Suss, S. Porada, X. sun, P. M. Biesheuvel, J. Yoon, and V. Presser, "Water desali-nation via capacitive deionization: What is it and what can we expect from it?", Energy Environ. Sci., 8, 2296 (2015). https://doi.org/10.1039/C5EE00519A
  15. J. Sodja, "Turbulence models in CFD", University of Ljubljana (2007).
  16. W. P. Jones and E. Launder, "The prediction of laminarization with a two-equation model of turbulence", Int. J. Heat Mass Transf., 15, 301 (1972). https://doi.org/10.1016/0017-9310(72)90076-2