• Title/Summary/Keyword: Velocity Trajectory

Search Result 450, Processing Time 0.025 seconds

Adaptive Force Ripple Compensation and Precision Tracking Control of High Precision Linear Motor System (초정밀 선형 모터 시스템의 적응형 힘리플 보상과 정밀 트랙킹 제어)

  • Choi Young-Man;Gweon Dae-Gab;Lee Moon G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.51-60
    • /
    • 2005
  • This paper describes a robust control scheme for high-speed and long stroke scanning motion of high precision linear motor system consisting of linear motor, air bearing guide and position measurement system using heterodyne interferometer. Nowadays, semiconductor process and inspection of wafer or LCD need high speed and long travel length for their high throughput and extremely small velocity fluctuations or tracking errors. In order to satisfy these conditions, linear motor system are widely used because they have large thrust force and do not need motion conversion mechanisms such as ball screw, rack & pinion or capstan with which the system are burdened. However linear motors have a problem called force ripple. Force ripple deteriorates the tracking performances and makes periodic position errors. So, force ripple must be compensated. To maximize the tracking performance of linear motor system, we propose the control scheme which is composed of a robust control method, Time Delay Controller (TDC) and a feedforward control method, Zero Phase Error Tracking Control (ZPETC) for accurate tracking a given trajectory and an adaptive force ripple compensation (AFC) algorithm fur estimating and compensating force ripple. The adaptive ripple compensation is continuously refined on the basis of tracking error. Computer simulation results based on modeled parameters verify the effectiveness of the proposed control scheme for high-speed, long stroke and high precision scanning motion and show that the proposed control scheme can achieve a sup error tracking performance in comparison to conventional TDC control.

A Study on Buttom-up Pyramid Linking(BUPL) Method Combined with 2$\frac{1}{2}$D and Quadratic Model for Segmentation of Optical Flow field (Optical flow field 분할을 위한 2$\frac{1}{2}$D 및 정방형 모델과 결합된 버텀-업 피라미드 링킹 방법에 관 한 연구)

  • 김춘길;이형재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.11
    • /
    • pp.1154-1166
    • /
    • 1991
  • Optical flow is important not only for determining velocity and trajectory of the object but also for image segmentation and three dimensional information. In this paper an algorithm for segmentation of the optical flow field is presented. This method is based on a pyramid linking method combined with the proposed models. In this method each node contained a model of the flow in the region that it represented regions were combined by taking the model that best fit the union of the two regions. Each node linked to one of its fathers based on the error between the pixels represented by the node and the father's model of its flow. A major problem which has emerged in conventional researchs on optical flow field is sensitive to noise the proposed method is relatively insensitive to noise at the result of computer simulation the pyramid algorithm proposed in this paper seem to have useful properties.

  • PDF

Drag reduction for payload fairing of satellite launch vehicle with aerospike in transonic and low supersonic speeds

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.4
    • /
    • pp.371-385
    • /
    • 2020
  • A forward-facing aerospike attached to a payload fairing of a satellite launch vehicle significantly alters its flowfield and decreases the aerodynamic drag in transonic and low supersonic speeds. The present payload fairing is an axisymmetric configuration and consists of a blunt-nosed body along with a conical section, payload shroud, boat tail and followed by a booster. The main purpose of the present numerical simulations is to evaluate flowfield and assess the performance of aerodynamic drag coefficient with and without aerospike attached to a payload fairing of a typical satellite launch vehicle in freestream Mach number range 0.8 ≤ M ≤ 3.0 and freestream Reynolds number range 33.35 × 106/m ≤ Re ≤ 46.75 × 106/m whichincludes the maximum aerodynamic drag and maximum dynamic conditions during ascent flight trajectory of the satellite launch vehicle. A numerical simulation has been carried out to solve time-dependent compressible turbulent axisymmetric Reynolds-averaged Navier-Stokes equations. The closure of the system of equations is achieved using the Baldwin-Lomax turbulence model. The aerodynamic drag reduction mechanism is analysed employing numerical results such as velocity vector plots, density and Mach contours in conjunction with the experimental flow visualization pictures. The variations of wall pressure coefficient over the payload fairing with and without aerospike are exhibiting different kind of flowfield characteristics in the transonic and low supersonic speeds. The numerically computed results are compared with schlieren pictures, oil flow patterns and measured wall pressure distributions and exhibit good agreement between them.

Mission Orbit Design of CubeSat Impactor Measuring Lunar Local Magnetic Field

  • Lee, Jeong-Ah;Park, Sang-Young;Kim, Youngkwang;Bae, Jonghee;Lee, Donghun;Ju, Gwanghyeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.127-138
    • /
    • 2017
  • The current study designs the mission orbit of the lunar CubeSat spacecraft to measure the lunar local magnetic anomaly. To perform this mission, the CubeSat will impact the lunar surface over the Reiner Gamma swirl on the Moon. Orbit analyses are conducted comprising ${\Delta}V$ and error propagation analysis for the CubeSat mission orbit. First, three possible orbit scenarios are presented in terms of the CubeSat's impacting trajectories. For each scenario, it is important to achieve mission objectives with a minimum ${\Delta}V$ since the CubeSat is limited in size and cost. Therefore, the ${\Delta}V$ needed for the CubeSat to maneuver from the initial orbit toward the impacting trajectory is analyzed for each orbit scenario. In addition, error propagation analysis is performed for each scenario to evaluate how initial errors, such as position error, velocity error, and maneuver error, that occur when the CubeSat is separated from the lunar orbiter, eventually affect the final impact position. As a result, the current study adopts a CubeSat release from the circular orbit at 100 km altitude and an impact slope of $15^{\circ}$, among the possible impacting scenarios. For this scenario, the required ${\Delta}V$ is calculated as the result of the ${\Delta}V$ analysis. It can be used to practically make an estimate of this specific mission's fuel budget. In addition, the current study suggests error constraints for ${\Delta}V$ for the mission.

A Nonlinear Friction Torque Compensation of Servo System with Double Speed Controller (이중 속도 제어 구조에 의한 서보 제어기의 비선형 마찰 토크 보상)

  • Lee Dong-Hee;Choi Cheol;Kim Cheul-U
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.612-619
    • /
    • 2004
  • Servo motor systems with ball-screw and timing-belt are widely used in NC, robot, FA and industrial applications. However, the nonlinear friction torque and damping effect in machine elements reduce the control performance. Especially tracking errors in trajectory control and very low velocity control range are serious due to the break-away friction and Stribeck effects. In this paper, a new double speed controller is proposed for compensation of the nonlinear friction torque. The proposed double speed controller has outer speed controller and inner friction torque compensator. The proposed friction torque compensator compensates the nonlinear friction torque with actual speed and speed error information. Due to the actual information for friction torque compensator without parameters and mathematical model of motor, proposed compensator is very simple structure and the stability is very high. The proposed compensator is verified by simulation and experimental results.

Spacecraft Rendezvous Considering Orbital Energy and Wait Time (에너지와 대기시간을 고려한 우주비행체 랑데부)

  • Oghim, Snyoll;Leeghim, Henzeh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.775-783
    • /
    • 2017
  • In this paper, an impulsive rendezvous problem by using minimum energy of spacecraft in different orbits is addressed. In particular, the orbits considered in this paper are the general orbits including the elliptic orbit, while most of the orbits considered in the literature have been restricted within co-planar or circular orbits. The constraints for solving this optimization problem are the Kepler's equation formulated with the universal variable, and the final position and velocity of two spacecraft. Also, the Lagrange coefficients, sometimes called as f and g solution, are used to describe the orbit transfer. The proposed method technique is demonstrated through numerical simulation by considering the minimum energy, and both the minimum energy and the wait time, respectively. Finally, it is also verified by comparing with the Hohmann transfer known as the minimum energy trajectory. Although a closed-form solution cannot be obtained, it shows that the suggested technique can provide a new insight to solve various orbital transfer problems.

The Development of HILS and Test Equipment for Millimeter-Wave (Ka-Band) Seeker's Test and Evaluation (밀리미터파 탐색기 시험 평가를 위한 HILS 및 시험 장비 개발)

  • Song, Sung-Chan;Na, Young-Jin;Yoon, Tae-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.47-55
    • /
    • 2012
  • This paper describes the developed HILS and test equipment in order to test the performances of MMW(Millimeter-Wave) seeker which can detect and track a high speed of short-range ballistic missile and aircraft. This system is used to 141 horn antenna array, array switching, and gain and phase control algorithm to simulate various kind of targets and trajectory of high speed and maneuver moving target. In addition, it simulates not only velocity and range for these targets but also clutter and jamming environments. System configuration and implementation and the measurement results of major subsystems such as target motion simulator, simulation signal generator, high speed data aquisition unit, and central control unit are presented. These systems could verify the detection and tracking performance of MMW seeker through dynamic real-time test based on simulation flight scenario.

The Development of Interactive Ski-Simulation Motion Recognition System by Physics-Based Analysis (물리 모델 분석을 통한 상호 작용형 스키시뮬레이터 동작인식 시스템 개발)

  • Jin, Moon-Sub;Choi, Chun-Ho;Chung, Kyung-Ryul
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.205-210
    • /
    • 2013
  • In this research, we have developed a ski-simulation system based on a physics-based simulation model using Newton's second law of motion. Key parameters of the model, which estimates skier's trajectory, speed and acceleration change due to skier's control on ski plate and posture changes, were derived from a field test study performed on real ski slope. Skier's posture and motion were measured by motion capture system composed of 13 high speed IR camera, and skier's control and pressure distribution on ski plate were measured by acceleration and pressure sensors attached on ski plate and ski boots. Developed ski-simulation model analyzes user's full body and center of mass using a depth camera(Microsoft Kinect) device in real time and provides feedback about force, velocity and acceleration for user. As a result, through the development of interactive ski-simulation motion recognition system, we accumulated experience and skills based on physics models for development of sports simulator.

Tracking Path Generation of Mobile Robot for Interrupting Human Behavior (행동차단을 위한 이동로봇의 추적경로 생성)

  • Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.460-465
    • /
    • 2013
  • In this paper, we describe a security robot system to control human's behavior in the security area. In order to achieve these goals, we present a method for representing, tracking and human blocking by laserscanner systems in security area, with application to pedestrian tracking in a crowd. When it detects walking human who is for the security area, robot calculates his velocity vector, plans own path to forestall and interrupts him who want to head restricted area and starts to move along the estimated trajectory. While moving the robot continues these processes for adapting change of situation. After arriving at an opposite position human's walking direction, the robot advises him not to be headed more and change his course. The experimental results of estimating and tracking of the human in the wrong direction with the mobile robot are presented.

Experimental Evaluation of Feedforward Control Based on the Dynamic Models of A Direct Drive SCARA Robot (직접구동 평면 다관절 로봇의 동역학적 모델에 따른 피드포워드 제어의 실험적 평가)

  • Hong, Yun-Sik;Kang, Bong-Su;Kim, Su-Hyeon;Park, Gi-Hwan;Kwak, Yun-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.146-153
    • /
    • 1996
  • A SCARA type direct drive robot which can be used in the assembly operation was designed and manufactured. Graphite fiber epoxy composite material was used in the fabrication of the robot arm structure in order to improve the speed of the robot arm with a high damping effect. For model-based control and sensitivity analysis of system parameters, the dynamic model of robot arm and drive servo amplifier parameters such as equivalent gains of PWM driver and velocity gains of servo system were estimated from frequency response tests. The complete dynamic model for overall robot system was used in the simulation of the open-loop control. The simulation results agreed reasonably well to the experimental results. The feedforward control using the dynamic models improved the trajectory tracking performance, decreasing the tracking error by factor of three compared with PID control. This study found that the inverse dynamic model of the robot arm including the drive servo system showed better performances than the case of arm dynamic model only.