• Title/Summary/Keyword: Velocity Measurements

Search Result 1,301, Processing Time 0.022 seconds

Resonances of Unconstrained Compressive, Shear and Flexural Waves in Free-Free Cylinder Specimens (자유단 공시체에 있어서 압축파, 전단파, 휨파의 공진특성)

  • Park, Byoung-Sun;Joh, Sung-Ho;Lee, Sang-Heon;Kang, Tae-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.582-589
    • /
    • 2006
  • Shear wane velocity is important property for grasping the dynamic characteristics of material. It is has been used in various fields such as non-destructive testings of structures, seismic analysis of geotechnical structures and maintenance of concrete structure, and etc. Usually, shear wave velocities of rock cores and concrete cylinders are determined by free-free resonance tests, Shear wave measurement in free-free resonance tests is not straightforward, as compared with rod wave and flexural wane measurements. In This study, a new technique using resonance features of flexural and shear waves were proposed in which the nodal points for the fundamental mode of flexural waves were employed to generate and measure the shear waves with the flexural waves minimized. The real measurements for aluminum cylinders proved validity and reliability of the proposed algorithm. In addition to the proposed algorithm, the effects of material properties on elastic-wave velocities in resonance measurements were also studied. In summary, a new framework of the resonance measurements for shear-wave velocity determination was established, based on the results of this thesis.

  • PDF

The study of correlations between clinical balance scales and balance performance monitor parameters in patients with adolescent idiopathic scoliosis (청소년기 특발성 척추측만증 환자의 임상적 균형 평가지수와 균형 수행 모니터 측정값의 상관성 연구)

  • Shin, Seung-Sub
    • PNF and Movement
    • /
    • v.8 no.3
    • /
    • pp.39-47
    • /
    • 2010
  • Purpose : The purpose of this study was to investigate the correlations between clinical balance scales and Balance Performance Monitor parameters in patient with adolescent idiopathic scoliosis (AIS). Methods : Twenty AIS subjects (age, $14.26{\pm}1.93yrs$; height, $160.56{\pm}7.98cm$; weight, $47.54{\pm}6.94kg$)were participated in this study. Postural sway(mean balance, sway angle, sway area, sway path, maximal sway velocity) were were evaluated by balance performance monitor. Measurements for clinical balance scales were Functional reach test (both side), the Lateral reach test (both side) and One leg standing test (both legs). Results : The results were as follows. There were positive strong correlation between major curve direction and left-right sway angle, sway path, maximal sway velocity. There were negative strong correlation between the functional reach and left-right sway angle, sway area, sway path, maximal sway velocity. And the lateral reach were also showed negative strong correlation parameters of balance performance monitor. One leg standing were negatively correlated with left-right sway angle, sway path, maximal sway velocity. Conclusion : The clinical balance scales will be useful tools for balance measurements, and basic tools for clinical setting for patient with AIS.

  • PDF

Ultrasonic Phase Velocity and Attenuation Coefficient Predicted by Biot's Theory and the MBA Model in Cancellous Bone

  • Lee Kang Il;Yoon Suk Wang
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.183-186
    • /
    • 2004
  • Biot's theory and a modified Biot-Attenborough (MBA) model are applied to predict the dependences of acoustic characteristics on frequency and porosity in cancellous bone. The phase velocity and the attenuation coefficient predicted by both theories are compared with previous in vitro experimental measurements in terms of the mixed, the fast, and the slow waves. Biot's theory successfully predicts the dependences of phase velocity on frequency and porosity in cancellous bone, whereas a significant discrepancy is observed between predicted and measured attenuation coefficients. The MBA model is consistent with reported measurements for both dependences of phase velocity and attenuation coefficient on frequency and porosity. Based on the theoretical predictions from the MBA model, it is suggested that the attenuation coefficient of the mixed wave is dominated by the fast wave in the low-porosity region while it is dominated by the slow wave in the high-porosity region. This provides a qualitative explanation for the nonlinear relationship of attenuation of the mixed wave with porosity in cancellous bone.

  • PDF

A study on the laminar burning velocity according to the H2 content variation in a large range of equivalence ratio of syngas(H2/CO)-air premixed flames (넓은 당량비 구간에서 수소 함유량에 따른 합성가스(H2/CO)-공기 예혼합 화염의 층류연소속도에 관한 연구)

  • Jeong, Byeong-Gyu;Hwang, Cheol-Hong;Lee, Kee-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.215-218
    • /
    • 2012
  • In this study, syngas laminar burning velocities with various hydrogen contents were studied using both experimental measurements and kinetic simulations. The laminar burning velocities were measured by the angle method of Bunsen flame configuration and the numerical calculations including burning velocities were made using CHEMKIN Package with USC-Mech II. A large range of syngas mixture compositions such as 10:90%, 25:75%, 50:50%, 75:25% and equivalence ratio from lean condition of 0.5 to rich condition of 5.0 have been conducted. The experimental results of burning velocity were in good agreement with previous other research data and numerical simulation. Also, it was shown that the experimental measurements of laminar burning velocity linearly increased with the increasing of $H_2$ content although the flame speed of hydrogen is faster about ten times than carbon monoxide. This phenomenon is attributed to the rapid production of the hydrogen related radicals such as H and OH at the early stage of combustion, which is confirmed the linear increasing of radical concentrations on kinetic simulation.

  • PDF

Measurements of Three-Dimensional Velocities of Spray Droplets Using the Holographic Velocimetry System

  • Choo, Yeon-Jun;Kang, Bo-Seon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1095-1103
    • /
    • 2003
  • The Holographic Particle Velocimetry system can be a promising optical tool for the measurements of three dimensional particle velocities. In this study, the holographic particle velocimetry system was used to measure the sizes and velocities of droplets produced by a commercial full cone spray nozzle. As a preliminary validation experiment, the velocities of glass beads on a rotating disk were measured with uncertainty analysis to identify the sources of all relevant errors and to evaluate their magnitude. The error of the particle velocity measured by the holographic method was 0.75 ㎧, which was 4.5% of the known velocity estimated by the rotating speed of disk. The spray droplet velocities ranged from 10.3 to 13.3 ㎧ with average uncertainty of ${\pm}$ 1.6 ㎧, which was ${\pm}$ 14% of the mean droplet velocity. Compared with relatively small uncertainty of velocity components in the normal direction to the optical axis, uncertainty of the optical axis component was very high. This is due to the long depth of field of droplet images in the optical axis, which is inherent feature of holographic system using forward-scattering object wave of particles.

Flood Runoff Measurements using Surface Image Velocimetry (표면영상유속계(SIV)를 이용한 홍수유출량 측정)

  • Kim, Yong-Seok;Yang, Sung-Kee;Yu, Kwon-Kyu;Kim, Dong-Su
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.581-589
    • /
    • 2013
  • Surface Image Velocimetry(SIV) is an instrument to measure water surface velocity by using image processing techniques. Since SIV is a non-contact type measurement method, it is very effective and useful to measure water surface velocity for steep mountainous streams, such as streams in Jeju island. In the present study, a surface imaging velocimetry system was used to calculate the flow rate for flood event due to a typhoon. At the same time, two types of electromagnetic surface velocimetries (electromagnetic surface current meter and Kalesto) were used to observe flow velocities and compare the accuracies of each instrument. The comparison showed that for velocity distributions root mean square error(RMSE) was 0.33 and R-squared was 0.72. For discharge measurements, root mean square error(RMSE) reached 6.04 and R-squared did 0.92. It means that surface image velocimetry could be used as an alternative method for electromagnetic surface velocimetries in measuring flood discharge.

Three-dimensional flow and pressure loss of a film-cooling jets injected in spanwise direction (폭방향으로 분사되는 막냉각 제트의 3차원 유동특성 및 압력손실)

  • Lee, Sang-U;Kim,Yong-Beom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1363-1375
    • /
    • 1996
  • Oil-film flow visualizations and three-dimensional flow measurements using a five-hole probe have been conducted to investigate three-dimensional flow characteristics and total pressure losses of a row of film-cooling jets injected in spanwise direction. For several span-to-diameter ratios, experiments are performed in the case of three velocity ratios of 0.5, 1.0 and 1.5. The flow measurements show that downstream flow due to the injection is characterized by a single streamwise vortex instead of a pair of counter-rotating vortices, which appear in the case of streamwise injection, and the vortex strength strongly depends on the velocity ratio. Regardless of the velocity*y ratio, presence of the spanwise film-cooling jets always produces total pressure loss, which is pronounced when the velocity ratio is large. It has also been found that the production of the total pressure loss is closely related to the secondary vortical flow. In addition, effects of the span-to-diameter ratio on the flow and total pressure loss are discussed in detail.

Effect of deflected inflow on flows in a strongly-curved 90 degree elbow

  • Iwamoto, Yukiharu;Kusuzaki, Ryo;Sogo, Motosuke;Yasuda, Kazunori;Yamano, Hidemasa;Tanaka, Masaaki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.1
    • /
    • pp.76-85
    • /
    • 2017
  • Wall pressure measurements and flow visualization were conducted for a 90 degree elbow with an axis curvature radius the same as its inner diameter (125 mm). Reynolds numbers 320,000 and 500,000, based on the inner diameter and bulk velocity, were examined. A deflected inflow, having an almost constant velocity slope and a faster velocity at the inside, was introduced. Ensemble averaged pressure distributions showed that no difference of normalized pressure could be found in both the Reynolds number cases. Power spectral density functions of pressures exhibited that the fluctuation having the Strouhal number (based on the inner diameter and bulk velocity) of 0.6 existed in the downstream region of the elbow, which was 0.1 larger than that of the uniform inflow case [1]. Results of numerical calculations qualitatively coincided with the experimental ones.

Concave Surface Boundary Layer Flows in the Presence of Streamwise Vortices

  • Winoto, Sonny H.;Tandiono, Tandiono;Shah, Dilip A.;Mitsudharmadi, Hatsari
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.33-46
    • /
    • 2011
  • Concave surface boundary-layer flows are subjected to centrifugal instability which results in the formation of streamwise counter-rotating vortices. Such boundary layer flows have been experimentally investigated on concave surfaces of 1 m and 2 m radius of curvature. In the experiments, to obtain uniform vortex wavelengths, thin perturbation wires placed upstream and perpendicular to the concave surface leading edge, were used to pre-set the wavelengths. Velocity contours were obtained from hot-wire anemometer velocity measurements. The most amplified vortex wavelengths can be pre-set by the spanwise spacing of the thin wires and the free-stream velocity. The velocity contours on the cross-sectional planes at several streamwise locations show the growth and breakdown of the vortices. Three different vortex growth regions can be identified. The occurrence of a secondary instability mode is also shown as mushroom-like structures as a consequence of the non-linear growth of the streamwise vortices. Wall shear stress measurements on concave surface of 1 m radius of curvature reveal that the spanwise-averaged wall shear stress increases well beyond the flat plate boundary layer values. By pre-setting much larger or much smaller vortex wavelength than the most amplified one, the splitting or merging of the streamwise vortices will respectively occur.

TDOA Based Moving Target Velocity Estimation in Sensor Network (센서네트워크 내에서 TDOA 측정치 기반의 이동 표적 속도 정보 추정)

  • Kim, Yong Hwi;Park, Min Soo;Park, Jin Bae;Yoon, Tae Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.445-450
    • /
    • 2015
  • In the moving target problem, the velocity information of the moving target is very important as well as the high accuracy position information. To solve this problem, active researches are being conducted recently with combine the Time Difference of Arrival (TDOA) and Frequency Delay of Arrival(FDOA) measurements. However, since the FDOA measurement is utilizing the Doppler effect due to the relative velocity between the target source and the receiver sensor, it may be difficult to use the FDOA measurement if the moving target speed is not sufficiently fast. In this paper, we propose a method for estimating the position and the velocities of the target by using only the TDOA measurements for the low speed moving target in the indoor environment with sensor network. First, the target position and heading angle are obtained from the estimated positions of two attached transmitters on the target. Then, the target angular and linear velocities are also estimated. In addtion, we apply the Instrumental Variable (IV) technique to compensate the estimation error of the estimated target velocity. In simulation, the performance of the proposed algorithm is verified.