• Title/Summary/Keyword: Velocity Gain

Search Result 241, Processing Time 0.03 seconds

Laser Doppler Vibrometer using the Bulk Homodyne Interferometer (호모다인 간섭계를 이용한 레이저 진동 측정기의 개발)

  • 라종필;경용수;왕세명;김경석;박기환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.397-402
    • /
    • 2003
  • The FM demodulation method for a bulk homodyne laser interferometer is presented. The Doppler frequency that represents the surface velocity of a vibrating object is obtained by using the bulk homodyne laser interferometer, and converted to the voltage signal by using the proposed analogue FM demodulation circuit. The DC offsets of the interferent signals that are obtained from the bulk homodyne interferometer are eliminated by using a simple subtraction. The new method for compensation of the asymmetry of each channels is presented. The light power variation of the interferometer is normalized by using the Auto Gain Controller(AGC). The proposed FM demodulation algorithm is proved by the theoretical method, and validated by the experimental results. In experiments, the proposed FM demodulation algorithm is compared with the conventional demodulation methods.

  • PDF

A Vertical Line Following Guidance Law Design (수직면 직선추종유도법칙 설계)

  • Whang, Ick-Ho;Cho, Sung-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1309-1313
    • /
    • 2010
  • In this paper, we propose a novel guidance law for controlling an UAV(Unmanned Air-Vehicle) to follow a reference line in vertical plane. A kinematics model representing the relative motion of the UAV to the reference line is derived. And then LQR(Linear Quadratic Regulator) theory is applied to the model to derive the VLFG(Vertical Line Following Guidance) law. The resultant guidance law forms a gain-scheduling controller scheduled by a simple parameter $\sigma$ which is a function of the UAV's velocity, axial acceleration, gravity, and the slope of the reference line. Also derived is a stability condition for the $\sigma$ variation based on Lyapunov theory. Simulation results show that the proposed guidance law can be applied effectively to UAV guidance algorithm design.

A Study on the Design of a Looper Strip Controller and its Robustness for Hot Strip Mills Using ILQ Control (역최적제어(ILQ)를 이용한 열간압연시스템의 루퍼 장력제어기 설계 및 견실성 연구)

  • Hwang, I-Cheol;Kim, Seong-Bae
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.93-98
    • /
    • 2001
  • This paper studies on the design of an ILQ(Inverse Linear Quadratic optimal control) looper control system for hot strip mills. The looper which is placed between each stand plays an important role in controlling strip width by regulating strip tension variation generated from the velocity difference of main work rolls. The mathematical model for looper is firstly obtained by Taylor's linearization of nonlinear differential equations, where it is given as a linear and time invariant state-space equation. Secondly, a looper servo controller is designed by ILQ control algorithm, which is an inverse problem of LQ(Linear Quadratic optimal control) control. By tunning control gain arbitration parameters and time constants, it is shown that the ILQ looper servo controller has the performance that makes well to follow desired trajectories of both strip tension and looper angle.

  • PDF

Design of a Self-Organizing Fuzzy Controller Using the Look-Up Tables (룩업 테이블을 이용한 자동 학습 퍼지 제어기의 설계에 관한 연구)

  • 이용노;김태원;서일홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.9
    • /
    • pp.76-87
    • /
    • 1992
  • A novel self-organizing fuzzy plus PD control algorithm is proposed, where the proposed controller consists of a typical fuzzy reasoning part and self organizing part in which both on-line and off-line algorithms are employed to modify the Look-Up Table(LUT) for the fuzzy control rules and to decide how much fuzzy rules are to be modifid after evaluating the control performance, respectively. And the fuzzy controller is replaced by a PD controller in a prespecified region nearby the set point for good settling actions, where gain parameters are determined by fuzzy rules based on the magnitude of error velocity at the instant when the output penetrates into the prespecified region. To show the effectiveness of the proposed controller, extensive computer simulation results as well as experimental results are illustrated for an inverted pendulum system.

  • PDF

Improvement of Target Motion Analysis for a Passive Sonar System with Measurement Bias Estimation (측정각 Bias 보상을 통한 수동소나체계의 표적기동분석 성능 향상 연구)

  • Yoo, Phil-Hoon;Song, Taek-Lyul
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2011-2013
    • /
    • 2001
  • In this paper the MMAE(Multiple Model Adaptive Estimation) algorithm using the MGEKF(Modified Gain Extended Kalman Filter) of which modes are set to be measurement biases is proposed to enhance the performance of target tracking with bearing only measurements. The state are composed of relative position, relative velocity and taregt acceleration. The mode probability is calculated from the bearing only measurements from the HMS(Hull-Mounted Sonar). The proposed algorithm is tested in a series of computer simulation runs.

  • PDF

Implementation of Integrated Control Environment for Biped Robot(IWR-III) (이족보행로봇(IWR-III)의 통합 저어 환경 구축)

  • Noh, Gyeong-Gon;Seo, Yeong-Seop;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3089-3091
    • /
    • 1999
  • To control IWR-III Biped Waking Robot, those complex modules are necessary that concurrent control multi-axes servo motors, PID & Feedforward gain tuning, initial value calibration, display current status of system, user interface for emergency safety and three-dimensional rendering graphic visualization. It is developed for various-type gait $data^{[1]}$ and for control modes (i.e open/closed loop and pulse/velocity/torque control) that Integrated Control Enviroment with GUI( Graphic User Interface) consist of time-buffered control part using MMC (Multi-Motion Controller) and 3D simulation part using DirectX graphic library.

  • PDF

Performance Prediction of the Horizontal Axis wind Turbine in Arbitrary Wind Direction (임의 풍향에 있는 수평축 풍력터빈의 성능예측)

  • Yu, Neung-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.255-265
    • /
    • 1996
  • Up to the present the study on the performance prediction of HAWT was performed mainly by assuming the axial flow. So in this paper we aimed at the fully non-axial flow of HAWT. For this purpose, we defined the wind turbine pitch angle in addition to the yaw angle to specify the arbitrary wind direction. And we adopted the Glauert method as the basic analysis method then modified this method suitably for our goal. By comparing the computational results obtained by this modified new Glauert method with the experimental results, it was proved that our method was a very efficient method. And on the basis of the reliability of this method we considered the effect of all the design parameters and presented the optimum blade geometry and the optimum operating condition to gain the best performance curve.

The Design of Position Controll System by Model Following Servo Controller (Model 추종형 Servo Controller에 의한 위치제어계의 설계)

  • 장기효;하홍곤;홍창희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.1
    • /
    • pp.1-12
    • /
    • 1991
  • In this paper the design and construction of discrete model following servo dontroller on the position control system is proposed. The operational time delay of the plant in the controller which is proposed, is considered and the system which is added by the integral compensation in first order difference equation is constructed. By applying the optimal regulator method to the system, the method which find the optimal state feedback gain is developed theoretically. The output of a model which is correspond to a DC Servo motor follow quickly the speed response of a DC Servo motor and the velocity error in ansteady-state is reduced in zero and the position response is controlled correctly, the performance of the controller is contoller is confirmed by Computer Simulation.

  • PDF

Elastodynamic Control of Industrial Robotic Manipulators Using Piezoelectric Materials (압전재료를 이용한 산업용 로보트 매니퓰레이터의 동탄성 제어)

  • Choi, S.B.;Cheong, C.C.;Choi, I.S.;Lee, T.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.54-63
    • /
    • 1993
  • This paper presents the dynamic modeling and control methodology to arrest structural deflections of industrial robotic manipulators featuring elastic members retrofitted with surface bonded pizoelectric actuators and sensors. The cynamic modeling is accomplished by employing a variational theorem, prior to developing a finite element formulation. This finite element formulation accounts for both original robot member elements and also bonded piezoelectric material elements. The governing equation of motion is then modified by condensing the electric potential vectors and subsequently two different negative velocity feedback controllers are established; a constant-gain feedback controller and a constant- amplitude feedback controller. By adopting a Model P50 articulating industrial robot manufactured by Gerneral Electric Company, conputer simulations are underlaken in order to demonstrate superior performance characteristics to be accrued from this proposed methodology such as smaller deflections at the end-effector.

  • PDF

Active Trajectory Tracking Control of AMR using Robust PID Tunning

  • Tae-Seok Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.4_1
    • /
    • pp.753-758
    • /
    • 2024
  • Trajectory tracking of the AMR robot is one research for the AMR robot navigation. For the control system of the Autonomous mobile robot(AMR) being in non-honolomic system and the complex relations among the control parameters, it is d ifficult to solve the problem based on traditional mathematics model. In this paper, we presents a simple and effective way of implementing an adaptive tracking controller based on the PID for AMR robot trajectory tracking. The method uses a non-linear model of AMR robot kinematics and thus allows an accurate prediction of the future trajectories. The proposed controller has a parallel structure that consists of PID controller with a fixed gain. The control law is constructed on the basis of Lyapunov stability theory. Computer simulation for a differentially driven non-holonomic AMR robot is carried out in the velocity and orientation tracking control of the non-holonomic AMR. The simulation results of wheel type AMR robot platform show that the proposed controller is more robust than the conventional back-stepping controller to show the effectiveness of the proposed algorithm.