• 제목/요약/키워드: Velocity Feedback Control

검색결과 313건 처리시간 0.021초

대부하 대용량 유압 서보 시스템의 속도제어 (Velocity Control of Hydraulic Servo System with Heavy Load and Large Capacitya)

  • 이교일;이경수;이대옥
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.669-672
    • /
    • 1986
  • The velocity control of hydraulic servo system with heavy load and large capacity was investigated through the linear analysis and digital computer simulation. Each part of the nonlinear hydraulic servo system was mathmatically modelled. The result of linear analysis and computer simulation showed that the use of derivative of load pressure as a feedback signal is effective in velocity control.

  • PDF

컨테이너 크레인의 흔들림 제어 ( Part I ) : 모델링, 제어전략, 기준선도를 통한 오차 피이드백 제어 (Sway Control of a Container Crane ( Part I ) : Modeling, Control Strategy, Error Feedback Control Via Reference Velocity Profiles)

  • 홍금식;손성철;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제3권1호
    • /
    • pp.23-31
    • /
    • 1997
  • The sway control problem of pendulum motion of a container hanging on a Portainer Crane, which transports containers from a container ship to trucks, is considered in the paper. The equations of motion are obtained through the Lagrange mechanics and simplified for control purposes. Considering that the fast traveling of trolley and no residual swing motion of the container at the end of acceleration and deceleration are crucial for quick transportation, several velocity patterns of trolley movement including the time-optimal control are investigated. Incorporating the change of rope length, a reference swing trajectory is introduced in the control loop and the error signal between the reference sway angle and the measured sway angle is feedbacked. Proposed control strategy is shown to be robust to disturbances like winds and initial sway motion.

  • PDF

압전감지기/작동기를 이용한 복합적층판의 다중모드 진동제어 (Multi-Modal Vibration Control of Laminated Composite Plates Using Piezoceramic Sensors/Actuators)

  • 김문현;강영규;박현철;황운봉;한경섭
    • 대한기계학회논문집A
    • /
    • 제20권10호
    • /
    • pp.3173-3185
    • /
    • 1996
  • Multi-model vibration control of laminated composites plates for various fiver orientations has been carried out by making use of piezolectric materials(PZT) as sensors and actuators. Cantilever plate is used as a specimen to test multi-modal vibration supression under random exitation. Impulse technique is applied to determine the natural frequency, the damping ratio(.zeta.) and the modal damping(2.zeta..omega.) of the first bending and the trosion modes. Two independent controllers are implemented to control the two modes simultaneously and established digitally on the basis of the direct negative velocity feedback control with collocated sensor/actuator. Experimental results for various fiber orientations and feedback gains are compared with finite element analysis considering stiffnesses and dampings of piezoeletiric sensors, actuators and bonding layer.

Modeling and experiment for the force/impact control via passive hardware damper

  • Oh, Y.H.;Chung, W.K.;Youm, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.172-178
    • /
    • 1993
  • This paper deals with the modeling and experiment of a robot system for force/impact control performance. The basic model is composed of a direct drive motor, servo amplifier, link, force sensor and environments. Based on the developed model, the stability of the whole system was analyzed via root locus method. For the force control, integral force compensation with velocity feedback method shows the best performance of all the explicit force control strategies. In dealing with impact, PID position control and the explicit force control method were implemented. Instead of add more damping to the robot system by velocity feedback, we developed a new passive damping method and it was also applied to enhance the damping characteristic of the system.

  • PDF

Orthogonalization principle for hybrid control of robot arms under geometric constraint

  • Arimoto, Suguru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.1-6
    • /
    • 1992
  • A principle of "orthogonalization" is proposed as an extended notion of hybrid (force and position) control for robot manipulators under geometric endpoint constraints. The principle realizes the hybrid control in a strict sense by letting position and velocity feedback signals be orthogonal in joint space to the contact force vector whose components are exerted at corresponding joints. This orthogonalization is executed via a projection matrix computed in real-time from a gradient of the equation of the surface in joint coordinates and hence both projected position and velocity feedback signals become perpendicular to the force vector that is normal to the surface at the contact point in joint space. To show the important role of the principle in control of robot manipulators, three basic problems are analyzed, the first is a hybrid trajectory tracking problem by means of a "modified hybrid computed torque method", the second is a model-based adaptive control problem for robot manipulators under geometric endpoint constraints, and the third is an iterative learning control problem. It is shown that the passivity of residual error dynamics of robots follows from the orthogonalization principle and it plays a crucial role in convergence properties of both positional and force error signals.force error signals.

  • PDF

Design of a dynamic output feedback law for replacing the output derivatives

  • Son, Young-I.;Shim, Hyung-Bo;Jo, Nam-H.;Kim, Kab-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.337-341
    • /
    • 2003
  • This paper provides a design method for a dynamic output feedback controller which stabilizes a class of linear time invariant systems. We suppose all the states of the given system is not measurable and only the outputs are used to stabilize the system. The systems considered cannot be stabilized by a static output feedback only. In the scheme we first assume that the given system can be stabilized by a state feedback composed of its output, velocity of the output and its higher order derivative terms. Instead of using the derivatives of the output, however, a dynamic system is constructed systematically which replaces the role of the derivative terms. Then, a high-gain output feedback stabilizes the composite system together with the newly constructed system. The performance of the proposed control law is illustrated in the comparative simulation studies of a numerical example with an observer-based control law.

  • PDF

Delayed Feedback을 이용한 로보트 제어기의 설계 (CONTROLLER DESIGN FOR A ROBOTIC MANIPULATOR DELAYED FEEDBACK)

  • 임동진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.145-148
    • /
    • 1990
  • In this paper, the problem of designing a feedback controller for a robotic manipulator, which is activated by a D.C. motor through a gear train and a flexible shaft or chain, is considered. When the response of the closed loop control system is relatively slow, a satisfactory controller may be designed as a PID controller. As the speed of the control system increases, however, the spring effect of the linkage becomes profound, and as a result, the transient response exhibits a substantial oscillation. To eliminate this oscillation, it is necessary to design the controller based on at least a fourth order system model. This, in turn, requires the feedback of the entire state variables. In practice, however, only the position of the manipulator and the velocity of the motor are readily measurable. The state variable reconstruction method or a state observer cannot be used because of the system nonlinearities such as the Coulomb frictions. In this study, an alternative controller, which is based on delayed feedback of the output variable only, is proposed, and a successful delayed feedback controller is designed and implemented on an actual experimental manipulator.

  • PDF

주기적 회전을 이용한 원봉 후류의 되먹임 제어 (Feedback Control of a Circular Cylinder Wake with Rotational Oscillation)

  • 백승진;성형진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.265-270
    • /
    • 2001
  • This study presents a feedback control methodology for suppression of the vortex shedding from a circular cylinder in a uniform flow. A rotational oscillation is applied as a controlled forcing and the lift coefficient ($C_L$) is used as a feedback signal. A feedback control concept is made based on the phase relation between the rotation velocity and $C_L$ at 'lock-on', The phase between the forcing and the vortex formation is changed $180^{\circ}$ from the phase of enhancing the lock-on state. This concept is examined by solving the Van del Pol equation. The results are satisfactory.

  • PDF

차량의 개폐력 보조 여닫이 문의 되먹임 선형화를 이용한 속도 제어 및 충돌 감지 (Velocity Control and Collision Detection by Feedback Linearization for an Power-assisted Automotive Swing Door)

  • 이병수;박민규;성금길
    • 한국자동차공학회논문집
    • /
    • 제21권5호
    • /
    • pp.40-46
    • /
    • 2013
  • Automatic swing door for an automotive application is considered. The equation of motion for a driver side swing door is introduced and gravity cancellation control scheme is adapted. The control scheme supposed to cancel the moment due to the tilt of the car. A speed control is suggested for door operation automation but the output of the speed control is not suppose to be precise as for the manufacturing system control. In the frame of the velocity control of the door, feedback linearization was applied for collision detection. The collision detection performance is satisfactory. The estimate of the magnitude of disturbance due to the collision is close to the actual magnitude of disturbance. Simulation study has been performed to gain insight into the system behavior. Also real test on the prototype hardware has been performed for verification purpose.

능동음향진동제어를 위한 센서와 액추에이터의 동위치화 연구 (Collocation of Sensor and Actuator for Active Control of Sound and Vibration)

  • 이영섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.778-783
    • /
    • 2003
  • The problem considered in this paper is about the collocation of sensor and actuator for the active control of sound and vibration. It is well-known that a point collocated sensor-actuator pair offers an unconditional stability with very high performance when it is used with a direct velocity feedback (DVFB) control, because the pair has strictly positive real (SPR) property. In order to utilize this SPR characteristics, a matched piezoelectric sensor and actuator pair is considered, but this pair suffers from the in-plane motion coupling problem with the out-of$.$plane motion due to the piezo sensor and actuator interaction. This coupling phnomenon limits the stability and performance of the matched pair with DVFB control. As a new alternative, a point sensor and piezoelectric actuator pair is also considered, which provides SPR property in all frequency range except at the first resonance in very low frequency. This non-SPR resonance could be minimized by applying a phase lag compensator.

  • PDF