• Title/Summary/Keyword: Velocity Deviation

Search Result 311, Processing Time 0.021 seconds

A Study on the Effect of Large Coherent Structures to the Skin Friction by POD Analysis (적합직교분해(POD)기법을 사용한 난류 응집구조 거동에 관한 연구)

  • Shin, Seong-Yun;Jung, Kwang-Hyo;Kang, Yong-Duck;Suh, Sung-Bu;Kim, Jin;An, Nam-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.5
    • /
    • pp.406-414
    • /
    • 2017
  • An experimental study in a recirculating water channel was carried out to investigate the effect of large coherent structures to the skin friction on a flat plate. Particle Image Velocimetry (PIV) technique was used to quantify characteristic features of coherent structures growing to the boundary layer. In the PIV measurement, it is difficult to calculate the friction velocity near the wall region due to laser deflection and uncertainty so that Clauser fitting method at the logarithmic region was adopted to compute the friction velocity and compared with the one directly measured by the dynamometer. With changing the free-stream velocity from 0.5 m/s to 1.0 m/s, the activity of coherent structures in the logarithmic region was increased over three times in terms of Reynolds stress. The flow field was separated by Variable Interval Time Averaging (VITA) technique into the weak and the strong structure case depending on the existence large coherent structures in order to validate its effectiveness. The stream-wise velocity fluctuation was scanned through at the boundary thickness whether it had a large deviation from background flow. With coherent structures connected from near-wall to the boundary layer, mean wall shear stress was higher than that of weak structure case. Proper Orthogonal Decomposition (POD) analysis was also applied to compare the energy budget between them at each free-stream velocity.

The Effect of Speed-dependent with Body Weight Supported Treadmill Training on the Ambulation of Stroke (속도-의존적 체중지지 트레드밀 보행이 뇌졸중 환자의 보행에 미치는 영향)

  • Kim, Jwa-Jun;Rho, Min-He;Goo, Bong-Oh;Ahn, So-Youn
    • The Journal of Korean Physical Therapy
    • /
    • v.17 no.3
    • /
    • pp.339-350
    • /
    • 2005
  • This study is the quasi-experimental study on the gait training rehabilitation. The purpose of this study is to prepare the baseline data for most suitable of gait while we were scrutinizing how the walking characters, functional walking ability, gait quality of stroke patients were affected by the gait on BWSTT (Body Weight Supported Treadmill Training) through the change of treadmill velocity and body weight support. To accomplish this purpose, this study used thirty subjects, more than 3 months post stroke, for rehabilitation who were divided between two gait training groups they received the neurophysiological physical therapy. For 6 weeks, 5 times a week for 15 minutes per session, the BWSTT group participated in 30 sessions structured speed-dependent treadmill training with 30% body weight supported, and the ratio of body weight support was gradually decreased as the patients advanced the capability of more self-support. The OGT(Over Ground Training) group received the same quantity of equal sessions like BWSTT. Firstly, we measured the absolute improvement of walking velocity (m/s), capacity(min/m) and cadence(steps/min) among walking characters. Secondly, we measured the functional walking ability such as Functional Ambulatory Category(FAC, score out of 5), Modified Motor Assesment Scale(MMAS, score out of 6) and Gait Quality Chart(score out of 41). Data analysis was performed with using SPSS 10.0 win program. The descriptive analysis was used to obtain average and standard deviation. The independent t-test and the paired t-test were used to compare both the groups about pre and post training test. Treatment effects were established by pre and post assessment. Subjects tolerated the training well without side-effects. Therefore, the results of this study were as follows; 1. There was a more significant difference from the improvement of walking velocity(0.09m/s), endurance(4.53min/m), cadence(4.20steps/min), FAC(0.26score), MMAS(0.33 score) and hip joint and pelvic of gait quality(0.39 score) ever before in the BWSTT group(p<.05). 2. There was a more significant increase from the walking velocity(0.01m/s) in the OGT group(p<.05). 3. There was a more statistical significant increase from comparing the average of walking velocity in both groups ever before(0.42m/s in BWSTT group and 0.31m/s in OGT group)(p<.05). There was a statistical significant difference from the average of cadence in both groups(61.87step/min in BWSTT group and 3.60steps/min in OGT group)(p<.05). As we can see from above, the findings suggest that BWSTT may be more effective than the OGT for improving some gait parameters such as gait velocity and cadency. This conclusion also suggest that BWSTT is more effective for the improvement of gait of stroke patients.

  • PDF

Accuracy Analysis of Velocity and Water Depth Measurement in the Straight Channel using ADCP (ADCP를 이용한 직선 하천의 유속 및 수심 측정 정확도 분석)

  • Kim, Jongmin;Kim, Dongsu;Son, Geunsoo;Kim, Seojun
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.5
    • /
    • pp.367-377
    • /
    • 2015
  • ADCPs have been highlighted so far for measuring steramflow discharge in terms of their high-order of accuracy, relatively low cost and less field operators driven by their easy in-situ operation. While ADCPs become increasingly dominant in hydrometric area, their actual measurement accuracy for velocity and bathymetry measurement has not been sufficiently validated due to the lack of reliable bench-mark data, and subsequently there are still many uncertain aspects for using ADCPs in the field. This research aimed at analyzing inter-comparison results between ADCP measurements with respect to the detailed ADV measurement in a specified field environment. Overall, 184 ADV points were collected for densely designed grids for the given cross-section that has 6 m of width, 1 m of depth, and 0.7 m/s of averaged mean flow velocity. Concurrently, ADCP fixed-points measurements were conducted for each 0.2m and 0.02m of horizontal and vertical spacing respectively. The inter-comparison results indicated that ADCP matched ADV velocity very accurately for 0.4~0.8 of relative depth (y/h), but noticeable deviation occurred between them in near surface and bottom region. For evaluating the capacity of measuring bathymetry of ADCPs, bottom tracking bathymetry based on oblique beams showed better performance than vertical beam approach, and similar results were shown for fixed and moving-boat method as well. Error analysis for velocity and bathymetry measurements of ADCP can be potentially able to be utilized for the more detailed uncertainty analysis of the ADCP discharge measurement.

An Electrophysiologic Study on the Median Motor Nerve and Ulnar Motor Nerve (정중운동신경과 척골운동신경의 전기생리학적 연구)

  • Kim, Jong-Soon;Lee, Hyun-Ok;Ahn, So-Youn;Koo, Bong-Oh;Nam, Kun-Woo;Kim, Young-Jick;Kim, Ho-Bong;Ryu, Jae-Kwan;Ryu, Jae-Moon
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.11 no.2
    • /
    • pp.62-70
    • /
    • 2005
  • The determination of peripheral nerve conduction velocity is an important part to electrodiagnosis. Its value as neurophysiologic investigative procedure has been known for many years but normal value of median and ulnar motor nerve was poorly reported in Korea. To evaluate of median and ulnar motor nerve terminal latency, amplitude of CMAP(compound muscle action potential), conduction velocity and F-wave latency for obtain clinically useful reference value. 71 normal volunteers(age, 19-65 years; 142 hands) examined who has no history of peripheral neuropathy, diabetic mellitus, chronic renal failure, endocrine disorders, anti-cancer medicine, anti-tubercle medicine, alcoholism, trauma, radiculopathy. Nicolet Viking II was use for detected terminal latency, amplitude of CMAP, conduction velocity and F-wave latency of median and ulnar motor nerve. Data analysis was performed using SPSS. Descriptive analysis was used for obtain mean and standard deviation, independent t-test was used to compare between Rt and Lt side also compare between different in genders. The results are summarized as follows: 1. Median motor nerve terminal latency was right 3.00ms, left 2.99ms and there was no significantly differences between right and left side and genders. 2. Median motor nerve amplitude of CMAP was right 17.26mV, left 1750mV and there was no significantly differences between right and left side and genders. 3. Median motor nerve conduction velocity was right 57.89m/sec, left 58.03m/sec and there was no significantly differences between right and left side and genders. 4. Median motor nerve F-wave latency was right 25.74ms, left 25.59ms and there was significantly differences between genders. 5. Ulnar motor nerve terminal latency was right 2.38ms, left 2.45ms and there was significantly differences between right and left side. 6. Ulnar motor nerve amplitude of CMAP was right 15.99mV, left 16.02mV and there was no significantly differences between right and left side and genders. 7. Ulnar motor nerve conduction velocity was right 60.35m/sec, left 59.73m/sec and there was no significantly differences between right and left side and genders. 8. Ulnar motor nerve F-wave latency was right 25.53ms, left 25.57ms and there was significantly differences between genders.

  • PDF

An Electrophysiologic Study on the Ulnar Digital Nerves (척골 지단 신경의 전기생리학적 연구)

  • Kim, Jong-Soon;Lee, Hyun-Ok;Ahn, So-Youn;Koo, Bong-Oh;Nam, Kun-Woo;Kim, Ho-Bong;Ryu, Jae-Kwan;Ryu, Jae-Moon
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.11 no.2
    • /
    • pp.13-18
    • /
    • 2005
  • The ulnar nerve extends down the arm, across the elbow, and into the hand. It provides sensation to the little and ring fingers and activates many of the small muscles in the hand. The determination of peripheral nerve conduction velocity is an important part of ulnar nerve evaluation. The electrodiagnostic value as neurophysiologic investigative procedure has been known for many years but normal value of digital nerve was not reported in Korea. The purpose of this investigation was to measure the digital nerve conduction velocity of ulnar nerve for obtain clinically useful reference value and compare difference in each fingers and then compare with the other countries. 71 normal Korean volunteers (age, 19-65 years; 142 hands) examined who has no history of peripheral neuropathy, diabetic mellitus, chronic renal failure, endocrine disorders, anti-cancer medicine, anti-tubercle medicine, alcoholism, trauma, radiculopathy. Nicolet Viking II (EMG machine) was use for detected conduction velocity and amplitude of digital nerves in ulnar nerve. Data analysis was performed using SPSS. Descriptive analysis was used for obtain mean and standard deviation and independent t-test was used to compare with ring and little finger. Conduction velocity of the right ring finger was 57.44m/sec and little finger was 55.32msec. The left ring finger was 55.55msec and little finger was 54.11msec. Amplitude of the right ring finger was $30.28{\mu}V$ and little finger was $48.36{\mu}V$. The left ring finger was $30.67{\mu}V$ and little finger was $52.76{\mu}V$. There were significantly difference between ring and little in amplitude (p<.05) but there were no statistically difference between conduction velocity of ring and little finger (p>.05). The amplitude of little finger are greater than ring finger. The present results revealed that electodiagnosis can easily perform in little finger for digital nerve of ulnar nerve study.

  • PDF

Analysis of Rainfall Effect on the GIUH Characteristic Velocity (GIUH 특성속도에 대한 강우의 영향 분석)

  • Kim, Kee-Wook;Roh, Jung-Hwan;Jeon, Yong-Woon;Yoo, Chul-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.533-545
    • /
    • 2003
  • This study analyzed several storm events observed in the Seolma-chun basin to derive the characteristic velocity of GIUH (Geomophological Instantaneous Unit Hydrograph) as well as its variability. Especially, this study focused on the variation of characteristic velocity due to the change of rainfall characteristics. The IUH of the Seolma-chun basin was derived using the HEC-1, whose peak discharge and time were then compared with those of the GIUH to derive the characteristic velocities. The characteristics velocities were analyzed by comparing with the GcIUH (Geomorphoclimatic IUH) as well as the characteristics of rainfall. Results are summarized as follows. (1) The characteristic velocity of GIUH was estimated higher with higher variability than the GcIUH, but their trends were found similar (2) Total amount of effective rainfall (or, mean effective rainfall) well explains the characteristic velocity of GIUH. This could be assured by the regression analysis, whose coefficient of determination was estimated about 0.6. (3) The duration and the maximum intensity of rainfall were found not to affect significantly on the characteristic velocity of GIUH. The coefficients of determination were estimated less than 0.3 for all cases considered. (4) For the rainfall events used in this study, the characteristic velocities of GIUH were found to follow the Gaussian distribution with its mean and the standard deviation 0.402 m/s and 0.173 m/s, respectively. Most of the values are within the range of 0.4∼0.5 m/s, and its coefficient of variation was estimated to be 0.43, much less than that of the runoff itself (about 1.0).

The Kinematic Analysis of Gliding Type and Delivery Phase in Each Trails during Shot-Putting - Focusing on Lee, Hyung-Keun, Player in Men's High School Youth Group - (고등부 남자 포환던지기 선수의 시기 별 글라이드 유형과 딜리버리 국면의 운동학적 분석 - 고등부 이형근 선수를 중심으로 -)

  • Kim, Tae-Sam;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.2
    • /
    • pp.159-171
    • /
    • 2012
  • The purpose of this study was to provide information about kinematic variables of the gliding and delivery motion of Hyung-Keun Lee, a high school shot putter who was ranked 1st at the 2011 National Sports Festivals. Three-Dimensional motion analysis using a system of 4 video cameras at a sampling frequency of 60 Hz was conducted during shot-putting events at the 2011 National Sports Festivals. During the gliding and delivery phase of the player the results showed following characteristics; 1) The gliding technique types of the player appeared to be the short-long technique as the gliding and stance length ratio were $42.3{\pm}3.87$ % and $57.7{\pm}3.87$ %, respectively. In addition, the trajectory of shots during the gliding and delivery phase showed different trajectory patterns with "S-shaped" type of elite players due to the deviation from a central axis of the APSS (athletic-plus shot system). 2) The horizontal velocity of COG made from gliding should maintain the velocity during transition and release phase, but the player showed a small momentum for a gradual decrease of velocity. 3) Therefore, the player requires to adjust an appropriate ratio between gliding and stance length with a strong muscle power at the trunk, throwing arm, and the lower extremity during gliding and delivery phase.

Body Sway as a Possible Indicator of Fatigue in Clerical Workers

  • Volker, Ina;Kirchner, Christine;Bock, Otmar Leo;Wascher, Edmund
    • Safety and Health at Work
    • /
    • v.6 no.3
    • /
    • pp.206-210
    • /
    • 2015
  • Background: Fatigue has a strong impact on workers' performance and safety, but expedient methods for assessing fatigue on the job are not yet available. Studies discuss posturography as an indicator of fatigue, but further evidence for its use in the workplace is needed. The purpose of the study is to examine whether posturography is a suitable indicator of fatigue in clerical workers. Methods: Thirty-six employees (${\emptyset}$ 34.8 years, standard deviation = 12.5) participated in postural tasks (eyes open, eyes closed, arm swinging, and dual task) in the morning and afternoon. Position of their center of pressure (COP) was registered using a Nintendo Wii Balance Board and commercial software. From registered COP time series, we calculated the following parameters: path length (mm), velocity (mm/s), anterior-posterior variance (mm), mediolateral variance (mm), and confidence area ($mm^2$). These parameters were reduced to two orthogonal factors in a factor analysis with varimax rotation. Results: Statistical analysis of the first factor (path length and velocity) showed a significant effect of time of day: COP moved along a shorter path at a lower velocity in the afternoon compared with that in the morning. There also was a significant effect of task, but no significant interaction. Conclusion: Data suggest that postural stability of clerical workers was comparable in the morning and afternoon, but COP movement was greater in the morning. Within the framework of dynamic systems theory, this could indicate that the postural system explored the state space in more detail, and thus was more ready to respond to unexpected perturbations in the morning.

An Experimental Study on Installation Effects of Pipe Elbow on the Electromagnetic Flowmeter Characteristics (Turbulent Flow) (곡관의 하류에 설치된 전자기유량계의 유량신호 특성에 관한 실험적 연구(난류 유동))

  • Lim, Ki-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1613-1621
    • /
    • 2002
  • An electromagnetic flowmeter(EMF) essentially averages the velocity distribution over the pipe cross- sectional area, and the measured value is dependent on the velocity profiles. In this study, installation effects of 90$^{\circ}$long elbow(KS B 1522, ISO 3419) on the EMF characteristics was investigated. A commercial EMF was adopted and the distribution of magnetic field in the electrodes cross section was measured. In the experiment, the national flow standard system, of which measurement uncertainty was evaluated in accordance with ISO 17025 recommendation, was used fur characterization of EMF. The leading line has 150D long straight pipe to established a fully developed flow before entering into the elbow and the elbow was installed downstream of it. then the flowmeter was tested within 50 D from the elbow. The installation effects of the flowmeter were investigated by varying the mean velocity(Reynolds No.)in pipe section, the locations and the direction of electrodes plane.($\phi$) From the experimental results, we find the optimal conditions to get most accurate measurements. Generally, the deviations from the calibration value were less than 0.5 % in farther than 10D distance from the elbow and the direction of electrode plane. $\phi$ = 90$^{\circ}$yielded the smallest measurement deviation. These characteristics were shown consistently in turbulent region regardless of the mean Reynolds number.

A study on the dither-stripping with dither motion sensor of a ring laser gyroscope (링레이저 자이로의 몸체진동 검출센서를 이용한 dither-stripping 연구)

  • Sim, Gyu Min;Im, Hu Jang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.63-71
    • /
    • 2003
  • In this paper we dicuss the dither-stripping methods by V-F(voltage to frequency) conversion of the output of angular velocity sensor which is for detecting the dither motion of the ring laser cavity. In this case, it is very important to evaluate the pulse-to-pulse scale factor between the ring lase output pulse and V-F output pulse, and also to compensate the zero offset of the V-F output pulse. In the case of the dither-stripping by the V-F conversion of angular velocity sensor output, there is a big angle uncertainty in the process of compensating the zero offset due to the dither noise for compensating the V-F output. By differential, the phase of the V-F output is changed. So, to compensate it, we change 90deg of the phase of angular velocity sensor output and delay half sampling time of the phase of ring laser output in advance. In this case the pulse-to-pulse scale factor can be evaluated by the standard deviation of each pulse. We can get the good result of the dither-stripping output by this angle differential method.