• Title/Summary/Keyword: Velocity Control Method

Search Result 1,184, Processing Time 0.031 seconds

A Study on the Sensorless Speed Control and Its Application of DC Motor (DC 모터의 센서리스 속도제어 및 그 응용에 관한연구)

  • 하윤수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.292-299
    • /
    • 1999
  • DC motors are widely used in many industrial fields as the actuator of the robot and the driving power motors of the electrical vehicle, Usually in the sensors of DC motors such as the encoder the tachogenerator and the potentiometer etc. are applied, But usage of these sensors results in the increased price and operating cost such that the application of the motors are limitted. To solve this problem another method to construct low cost control system is investigates. In this paper a new speed control method for DC motor is proposed. This method uses motor parameters instead of using speed or position sensors. In this way the angular velocity is estimated by the measure-ment values of the armature voltage and current instead of measuring the sensor signal. This paper presents an alorithm for estimating the angular velocity of DC motor The effectiveness of the proposed method is verified by experimental results. Also the applicability of the proposed method is presented by applying to the velocity contol of a wheeled mobile robot.

  • PDF

Stabilization of High-Voltage Static Var Compensator Using Switching Velocity and Temperature Control (스위칭 속도 및 온도 제어를 사용한 고압용 정지형 무효전력 보상장치의 안정화)

  • Kim, Yong-Tae;Lee, Chang-Seok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.107-112
    • /
    • 2013
  • In the paper, velocity controller of switching module and temperature controller for the high-voltage static var compensator are proposed. Because of the continuous increase in demand for electric power, transmission and distribution facilities of power plant are required. There is a bottleneck problem of transportation routes according to new construction and expansion of power transmission facilities. Therefore there are researches to maximize the utilization of existing facilities and to increase transmission capacity without new construction. The previous static var compensator detects voltage of input circuit of power, switches the SCR directly and generates switching noise. The proposed method increases switching velocity and decreases noise using switching control based on the voltage between both sides of SCR. Also the proposed method enhance the stability using realtime temperature control for heating of the system from increase of switching velocity. We experiment the velocity and temperature control of the proposed high-voltage static var compensator in the real environment and verify the performance of the proposed system by applying in the real field.

A self tuning PID controller with minimum variance (최소분산 자기동조 PID제어기)

  • Jo, Won-Cheol;Jeon, Gi-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.1
    • /
    • pp.14-20
    • /
    • 1996
  • This paper presents a self tuning method of a velocity type PID controller for minimum or non-minimum phase systems with time delays. The velocity type PID control structure is determined in the process of minimizing the variance of the auxilliary output, and self tuning effect is achieved through the recursive least square algorithm at the parameter estimation stage and also through the Robbins-Monro algorithm at the stage of optimizing a design parameter. This method is simple and effective compared with other existing methods[1,2]. Numerical examples are included to illustrate the procedure and to show the performance of the control system.

  • PDF

Modeling and experiment for the force/impact control via passive hardware damper

  • Oh, Y.H.;Chung, W.K.;Youm, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.172-178
    • /
    • 1993
  • This paper deals with the modeling and experiment of a robot system for force/impact control performance. The basic model is composed of a direct drive motor, servo amplifier, link, force sensor and environments. Based on the developed model, the stability of the whole system was analyzed via root locus method. For the force control, integral force compensation with velocity feedback method shows the best performance of all the explicit force control strategies. In dealing with impact, PID position control and the explicit force control method were implemented. Instead of add more damping to the robot system by velocity feedback, we developed a new passive damping method and it was also applied to enhance the damping characteristic of the system.

  • PDF

An Optimal Trajectory Planning for Redundant Robot Manipulators Based on Velocity Decomposition (속도분리를 이용한 여유자유도 로봇의 최적 경로계획)

  • 이지홍;원경태
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.836-840
    • /
    • 1999
  • Linear motion and angular motion in task space are handled separately in joint velocity planning for redundant robot manipulators. In solving inverse kinematic equations with given joint velocity limits, we consider the order of priority for linear motion and angular motion. The proposed method will be useful in such applications where only linear motions are important than angular motions or vice versa.

  • PDF

Velocity Pattern Generation for the Position Control Elevator (엘리베이터 위치제어를 위한 속도패턴 발생)

  • 김경서;박창훈;강기호;한권상
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.6
    • /
    • pp.616-623
    • /
    • 1999
  • Elevator velocity pattern is basL'C! on combining the time-based velocity pattern according to which the car m trip from starting position to vicinity of target position, and distance-based velocity pattern for precise landing ( of car. To obtain the lide comfortability, the impact caused by velocity pattern switching should be minimizLD b by removing the discontinuity of velocity and acceleration. In this paper, new velocity pattern generation m method which ensure the continuity of velocity and acceleration during pattern switching is proposed. P ProPOSLD velocity pattern also shorten the landing time to the target position.

  • PDF

Model Parameter-free Velocity Control of Permanent Magnet Synchronous Motor based on Koopman Operator (모델 파라미터 없는 쿠프만 연산자 기반의 영구자석 동기전동기의 속도제어)

  • Kim, Junsik;Woo, Heejin;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.308-313
    • /
    • 2022
  • This paper proposes a velocity control method for a permanent magnet synchronous motor (PMSM) based on the Koopman operator that does not require model parameter information except for pole-pair of the motor and external load. First, the Koopman operator is derived using observable functions and observation data. Then, the desired q-axis current corresponding to the desired velocity is generated using the relationship between the continuous-time Koopman operator and the dynamics of PMSM. Also, the dynamic equation of PMSM is expressed as a linear form in observable space using the discrete-time Koopman operator. Finally, it is applied to the linear quadratic regulator (LQR) to derive the final form of control input. To verify the proposed method, the conventional cascade PI controller and the LQR controller configured with the existing technique are compared with the proposed method in the viewpoint of q-axis current generation and velocity tracking performance in an environment with noise and external load.

Profibus based Multirate Estimation and Control of Dual Induction motors (프로피버스 기반 복수유도전동기의 멀티레이트 추정 및 제어)

  • Lee H.H.;Kim G.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.540-543
    • /
    • 2003
  • This paper presents a method for increasing controller performance through multirate state estimation for ac machines at a low velocity. The multirate controller outputs control desired speed at each measurement Instant. The simulation results show that the performance of multirate velocity estimation and control at low velocity is improved than single rate one.

  • PDF

Precise Position Vontrol of an In-Parallel Actuated Manipulator Using Disturbance and Velocity Observer (병렬 구동 매니퓰레이터의 외란 및 속도 추정을 이용한 정밀 위치 제어)

  • 최용훈;심재홍;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1796-1799
    • /
    • 1997
  • This thersis presents precise position control emthods of a 3-PRPS in-parallel manipulator for industrial applications such as assembly of highly integrated semiconductors and microsurgery. Since real-time ontrol is one of the most important issues required for industrial application, the experimental hardware is set up with a VME based DSP controller. In the 3-PRPS parallel mainpulator, structurally existing frictiion at three horizontal links considerably degrades the precise position control. In order to compensate the friction of the horizontal links in the joint space, a disturbance compensation usign disturbance and velocity observers has been proposed and investigated. We analyzed the decision method of eigenvalues of the disturbance observer and the effects of the control resulted form tehsystem model errors. Through a series of simulations and experiments, we see that the methods is capable of compensating variations of the robot parameters such as inertia and damping as well as the joint friction. Experiments show that the disturbance compensation method usign disturbance and velocity observer is very effective to compensate the friction. Compared with conventional PID position control, it decreased position errors ina circular motion by approximately 70%.

  • PDF

Stability Analysis of Decentralized PVFC Algorithm for Cooperative Mobile Robotic Systems

  • Suh, Jin-Ho;Lee, Kwon-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1909-1914
    • /
    • 2004
  • Passive velocity field control (PVFC) was previously developed for fully mechanical systems, in which the motion task was specified behaviorally in terms of a velocity field, and the closed-loop was passive with respect to a supply rate given by the environment input. However the PVFC was only applied to a single manipulator, the proposed control law was derived geometrically, and the geometric and robustness properties of the closed-loop system were also analyzed. In this paper, we propose a method to apply a decentralized control algorithm to cooperative 3-wheeled mobile robots whose subsystem is under nonholonomic constraints and which convey a common rigid object in a horizontal plain. Moreover it is shown that multiple robot systems ensure stability and the velocities of augmented systems convergence to a scaled multiple of each desired velocity field for cooperative mobile robot systems.

  • PDF