• Title/Summary/Keyword: Vehicular emission

Search Result 32, Processing Time 0.03 seconds

The Study on Performance and Emission of CNG as a Potential Fuel in Kore (한국의 잠재적인 연료인 CNG연료의 성능 및 배출물에 관한 연구)

  • Cho, Haeng-Muk;Chauhan, Bhupendra Singh
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.39-43
    • /
    • 2009
  • Gasoline engine have proved its utility in light, medium and heavy duty vehicle in every sector of the world community. The concern about long term availability of petroleum and the increasing threat for the environment by the increasing load of vehicular emission, compel the technology to upgrade itself for meeting the challenges. CNG is environmentally clean alternative to the existing SI Engines with out much change in the hardware. Many researchers have found this as a potential substitute to meet the energy requirement. Higher octane number and higher self ignition temperature make it a good gaseous fuel. Although power output is slightly lesser than the gasoline it's thermal efficiency is better than the gasoline for the same SI Engine. Results showed that reduced CO, hydrocarbon emissions is a favorable outcome, with slight increase in NOx emission when compared with gasoline fuel to dual fuel mode in the existing SI Engines.

  • PDF

Benefit Analysis of CNG as an Automobile Fuel (자동차연료로서 CNG의 경제성 분석)

  • Cho, Haeng-Muk;Mahmud, Md. Iqbal
    • Clean Technology
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • The adoption of compressed natural gas (CNG) as a vehicle fuel is a common phenomenon as it is accelerating worldwide. Increasing number of CNG driven vehicles around the world has jumped up from one million in 1996 to five million in 2006. CNG as a vehicle fuel is very popular to the end users because of its clean-burning properties and cost effective solution compared to other alternative fuels like diesel and gasoline. The use of CNG as a fuel reduces vehicular emission that is consisted of carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen ($NO_x$), carbon dioxide ($CO_2$) etc. This research highlights the characteristics of CNG vehicles, CNG arrangement in the vehicles, CNG fueling procedures and most importantly the environmental and economic factors that are highly considered as cost effective solution for the flexibility of using CNG in the automobiles.

Day and Night Distribution of Gas and Particle Phases Polycyclic Aromatic Hydrocarbons (PAHs) Concentrations in the Atmosphere of Seoul (서울 대기 중 기체 및 입자상 다환방향족탄화수소 (PAHs)의 낮·밤 분포 특성)

  • Lim, Hyung Bae;Kim, Yong Pyo;Lee, Ji Yi
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.4
    • /
    • pp.408-421
    • /
    • 2016
  • Day and night sampling for gas and particle phases PAHs were carried out in Seoul to characterize gas and particle phases PAHs concentrations in day and night times. There was no significant difference between day and night time for particle phase PAHs concentrations and phase distribution of PAHs, while, gas phase PAHs concentrations in daytime were about 1/2 of nighttime concentrations in both summer and winter due to photochemical reaction of gas phase PAHs during daytime. A high fraction of cancer risk for PAHs was attributed to particle phase PAHs and the excess cancer risk in winter was higher than in summer. The excess cancer risk level of total(gas+particle) PAHs in summer was partially observed when both gas and particle phase PAHs concentrations were considered as risk assessment. Based on the diagnostic ratios and factor analysis of PAHs concentrations, combustion(coal and natural gas) and vehicular emission might be the most significant contributors of PAHs and major factors for determining of PAHs concentration were different between day and night times.

A Study on the Lean Combustion Characteristics with Variation of Combustion Parameter in a Gasoline Direct Injection Engine (직접분사식 가솔린 엔진의 연소제어인자에 따른 희박연소 특성 연구)

  • Park, Cheol-Woong;Oh, Jin-Woo;Kim, Hong-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.39-45
    • /
    • 2012
  • Today gasoline engines for vehicular application are not only faced with stringent emission regulation but also with increasing requirements to better fuel economy, while guaranteeing power density. The spray-guided type gasoline direct injection (GDI) engine has an advantage of improved thermal efficiency and lower harmful emissions. Centrally mounted high pressure injector and adjacent spark plug allow stable lean combustion due to the flexible mixture stratification. In the present study, the performance and emissions characteristics of developed spray-guided type GDI combustion system were evaluated at various excess air ratio conditions. The specific fuel consumption and nitrogen oxides ($NO_x$) emissions were reduced due to the achievement of stable lean combustion under flammability limit. Multiple injection strategy was not helpful to improve fuel consumption while further reduction of $NO_x$ emissions was possible.

Suppressio of mutual interference among vehicular radars by ON-OFF control of pulses (다중차량의 자동 주행 시의 레이터 상호간섭 억제)

  • 최병철;김용철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1B
    • /
    • pp.62-70
    • /
    • 2000
  • Intelligent vehicles are equipped with radar sensors for collision avoidance. We present a method of suppressing mutual interference among pulse-type radars, where all the radars are standardized. We developed a method of separating the true self-reflection from the false one by controlling the pulse emission of a radar in anorhogonal ON, OFF pattern. Interference signal identified in OFF-intervals is recorded to indicate the positions of the expected ghosts in ON-intervals. PFA and PM are derived for a radar system with I-Q demodulation scheme, where Gaussian noise alone is Rayleigh-distributed and Gaussian noise plus reflected radar pulse are Rician-distributed. The value of the threshold adaptively updated in order to prevent the deterioration of PM. In the experimental result, PFA decreases by an order of 10,000, when compared with the conventional M of N majority voting method.

  • PDF

Characteristics of Washed-off Pollutants and Dynamic EMCs in a Parking Lot and a Bridge during Storms (주차장 및 교량지역의 강우유출수내 비점오염물질의 특성 비교 및 동적 EMCs)

  • Kim, Lee-Hyung;Lee, Seonha
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.3
    • /
    • pp.248-255
    • /
    • 2005
  • Since the water quality of drinking water sources has been recognized as a big issue, the ministry of Environment in Korea is designing the total maximum daily load (TMDL) program for 4 major large rivers. The TMDL program can be successfully performed as controling the nonpoint pollutants from watershed area near the river. Of the various landuses in nonpoint pollution, parking lots and bridges are stormwater intensive landuses because of high imperviousness and high pollutant mass emissions from vehicular activities. Vehicle emissions from those areas include different pollutants such as heavy metals, oil and grease and particulates from sources such as fuels, brake pad and tire wear, etc. Especially the pollutant washed-off from the landuses are directly affecting to the river water quality. Therefore this research was conducted to understand the magnitude and nature of the stormwater emissions with the goal of quantifying stormwater pollutant concentrations and mass emission rates of pollutants from parking lot and bridges in Korea. In Kongju city areas, two monitoring sites were equipped with an automatic rainfall gages and an automatic flow meter for accumulating the useful data such as rainfall, water quality and runoff flow. This manuscripts will show the concentration changes during storm duration and EMCs to characterize the concentration profiles in different land uses. Also the first flush criteria will be suggested using dynamic EMCs. The definition of dynamic EMC is a new approach explaining the relationship of EMC and first flush effect.

Estimation of Contribution by Pollutant Source of VOCs in Industrial Complexes of Gwangju Using Receptor Model (PMF) (수용모델(PMF)을 이용한 광주산업단지 VOCs의 오염원별 기여도 추정)

  • Park, Jin-Hwan;Park, Byoung-Hoon;Kim, Seung-Ho;Yang, Yoon-Cheol;Lee, Ki-Won;Bae, Seok-Jin;Song, Hyeong-Myeong
    • Journal of Environmental Science International
    • /
    • v.30 no.3
    • /
    • pp.219-234
    • /
    • 2021
  • Industrial emissions, mainly from industrial complexes, are important sources of ambient Volatile Organic Compounds (VOCs). Identification of the significant VOC sources from industrial complexes has practical significance for emission reduction. VOC samples were collected from July 2019 to June 2020. A Positive Matrix Factorization (PMF) receptor model was used to evaluate the VOC sources in the area. Four sources were identified by PMF analysis, including coating-1, coating-2, printing, and vehicle exhaust. The coating-1 source was revealed to have the highest contribution (41.5%), followed by coating-2 (23.9%), printing (23.1%), and vehicle exhaust (11.6%). The source showing the highest contribution was coating emissions, originating from the northwest to southwest of the sample site. It also relates to facilities that produce auto parts. The major components of VOC emissions from the coating facilities were toluene, m,p-xylene, ethylbenzene, o-xylene, and butyl acetate. Industrial emissions should be the top priority to meet the relevant control criteria, followed by vehicular emissions. This study provides a strategy for VOC source apportionment from an industrial complex, which is helpful in the development of targeted control strategies.

Characteristics of Air Quality in the West Coastal Urban Atmosphere; Characteristics of VOCs Concentration Measured from an Industrial Complex Monitoring Station at Gunsan and a Roadside Station at Jeonju (서해연안 도시지역의 대기질 특성 연구: 군산시 산업단지와 전주시 도로변에서 VOCs 농도분포 특성 연구)

  • Ryoo, Jae-Youn;Kim, Deug-Soo;Chae, Soo-Cheon;Nam, Tu-Cheon;Choi, Yang-Seock
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.633-648
    • /
    • 2010
  • The study was performed to elucidate the characteristics of VOCs at distinct monitoring sites in urban atmosphere; one is at a roadside in downtown inland city of Jeonju, and the other is at an industrial site in Gunsan near coastal area. The ambient samples were collected for 24 hours in two-bed adsorbent tubes by using MTS-32 sequential tube sampler equipped with Flex air pump every 16 days in a roadside and a industrial complex from February to November in 2009. VOCs were determined by thermal desorption coupled with GC/MSD. Major individual VOCs in roadside samples were shown as following order in magnitude: toluene>m,p-xylene>ethyl benzene>decanal; and those in the industrial complex samples were as follows: toluene>ethanol>ethyl acetate>decanal>m,pxylene. High benzene concentration in the roadside was more frequently occurred than in the industrial complex. However ambient level of toluene in the industrial complex was higher than that in the road side. Results from roadside sample analysis showed that nonane and 1,2,4-trimethylbenzene were very frequently observed with higher concentrations than those in the industrial complex. It seems that nonane and 1,2,4-trimethylbenzene could be the source characteristics for the roadside air. From the diurnal variation, it was found that concentrations of benzene, ethylbenzene, xylene, nonane and 1,2,4-trimethylbenznene in the roadside were higher during rush hours; but those in the industrial complex were higher from 10 to 16 LST when the industrial activities were animated. On weekly base, the concentration of benzene, toluene, ethylbenzene and m,p-xylene in the roadside were higher specifically on Wednesday, but those in the industrial complex were higher on Sunday. It was found that the general trends of VOCs levels at both sites significantly influence on seasonal changes. The results of factor analysis showed that the VOCs in the roadside were mainly affected by the emission of vehicles and the evaporation of diesel fuel, meanwhile those in the industrial complex were influenced by the evaporation of solvents and vehicular emission.

Characterization of contribution of vehicle emissions to ambient NO2 using stable isotopes (안정동위원소를 이용한 이동오염원에 의한 대기 중 NO2의 거동특성 연구)

  • Park, Kwang-Su;Kim, Hyuk;Yu, Suk-Min;Noh, Seam;Park, Yu-Mi;Seok, Kwang-Seol;Kim, Min-Seob;Yoon, Suk Hee;Kim, Young-Hee
    • Analytical Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.17-23
    • /
    • 2019
  • Sources of NOx are both anthropogenic (e.g. fossil fuel combustion, vehicles, and other industrial processes) and natural (e.g. lightning, biogenic soil processes, and wildfires). The nitrogen stable isotope ratio of NOx has been proposed as an indicator for NOx source partitioning, which would help identify the contributions of various NOx sources. In this study, the ${\delta}^{15}N-NO_2$ values of vehicle emissions were measured in an urban region, to understand the sources and processes that influence the isotopic composition of NOx emissions. The Ogawa passive air sampler was used to determine the isotopic composition of $NO_2$(g). In urban tunnels, the observed $NO_2$ concentration and ${\delta}^{15}N-NO_2$ values averaged $3809{\pm}2656ppbv$ and $7.7{\pm}1.8$‰, respectively. The observed ${\delta}^{15}N-NO_2$ values are associated with slight regional variations in the vehicular $NO_2$ source. Both $NO_2$ concentration and ${\delta}^{15}N-NO_2$ values were significantly higher near the expressway ($965{\pm}125ppbv$ and $5.9{\pm}1.4$‰) than at 1.1 km from the expressway ($372{\pm}96ppbv$ and $-11.5{\pm}2.9$‰), indicating a high proportion of vehicle emissions. Ambient ${\delta}^{15}N-NO_2$ values were used in a binary mixing model to estimate the percentage of the ${\delta}^{15}N-NO_2$ value contributed by vehicular NOx emissions. The calculated percentage of the ${\delta}^{15}N-NO_2$ contribution by vehicles was significantly higher close to the highway, as observed for the $NO_2$ concentration and ${\delta}^{15}N-NO_2$.

Exposure and Toxicity Assessment of Ultrafine Particles from Nearby Traffic in Urban Air in Seoul, Korea

  • Yang, Ji-Yeon;Kim, Jin-Yong;Jang, Ji-Young;Lee, Gun-Woo;Kim, Soo-Hwan;Shin, Dong-Chun;Lim, Young-Wook
    • Environmental Analysis Health and Toxicology
    • /
    • v.28
    • /
    • pp.7.1-7.9
    • /
    • 2013
  • Objectives We investigated the particle mass size distribution and chemical properties of air pollution particulate matter (PM) in the urban area and its capacity to induce cytotoxicity in human bronchial epithelial (BEAS-2B) cells. Methods To characterize the mass size distributions and chemical concentrations associated with urban PM, PM samples were collected by a 10-stage Micro-Orifice Uniform Deposit Impactor close to nearby traffic in an urban area from December 2007 to December 2009. PM samples for in vitro cytotoxicity testing were collected by a mini-volume air sampler with $PM_{10}$ and $PM_{2.5}$ inlets. Results The PM size distributions were bi-modal, peaking at 0.18 to 0.32 and 1.8 to $3.2{\mu}m$. The mass concentrations of the metals in fine particles (0.1 to $1.8{\mu}m$) accounted for 45.6 to 80.4% of the mass concentrations of metals in $PM_{10}$. The mass proportions of fine particles of the pollutants related to traffic emission, lead (80.4%), cadmium (69.0%), and chromium (63.8%) were higher than those of other metals. Iron was the dominant transition metal in the particles, accounting for 64.3% of the $PM_{10}$ mass in all the samples. We observed PM concentration-dependent cytotoxic effects on BEAS-2B cells. Conclusions We found that exposure to $PM_{2.5}$ and $PM_{10}$ from a nearby traffic area induced significant increases in protein expression of inflammatory cytokines (IL-6 and IL-8). The cell death rate and release of cytokines in response to the $PM_{2.5}$ treatment were higher than those with $PM_{10}$. The combined results support the hypothesis that ultrafine particles from vehicular sources can induce inflammatory responses related to environmental respiratory injury.