• Title/Summary/Keyword: Vehicular collision

Search Result 46, Processing Time 0.025 seconds

A Frame Collision Reduction Method for Safety Message Broadcasting in IEEE1609.4/IEEE802.11p based VANETs

  • Wang, Lei;Jing, Weiping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1031-1046
    • /
    • 2018
  • Vehicular ad hoc network (VANET) is a dedicated network to connect vehicles without any centralized administration or infrastructure. The wireless access in vehicular environments (WAVE) protocol leveraging IEEE 1609/802.11p is widely implemented for VANETs. However, in congested traffic situation, the performance of the WAVE system degrades significantly due to serious collision, especially for safety related broadcast services on the control channel (CCH) interval due to the inherent drawback of its collision avoidance mechanisms called carrier sense multiple access with collision avoidance (CSMA/CA). In this paper, we propose a method that can decrease the number of frame collisions in CCH with a few modifications to the IEEE 802.11p protocol. In the paper, vehicles still employ CSMA/CA to compete for the channel access opportunity. However, by taking advantage of periodicity of synchronization interval, a two-state switching scheme introducing two new inter frame space (IFS) is proposed to reduce the number of competing vehicles substantially and as a result, the collision probability is significantly decreased. The simulation results demonstrate the superiority of the proposed method in packet collision rate.

A DESIGN OF INTERSECTION COLLISION AVOIDANCE SYSTEM BASED ON UBIQUITOUS SENSOR NETWORKS

  • Kim, Min-Soo;Lee, Eun-Kyu;Jang, Byung-Tae
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.749-752
    • /
    • 2005
  • In this paper, we introduce an Intersection Collision Avoidance (ICA) system as a convergence example of Telematics and USN technology and show several requirements for the ICA system. Also, we propose a system design that satisfies the requirements of reliable vehicular data acquisition, real-time data transmission, and effective intersection collision prediction. The ICA system consists of vehicles, sensor nodes and a base station that can provide drivers with a reliable ICA service. Then, we propose several technological solutions needed when implementing the ICA system. Those are about sensor nodes deployment, vehicular information transmission, vehicular location data acquisition, and intersection collision prediction methods. We expect this system will be a good case study applied to real Telematics application based on USN technology.

  • PDF

Vehicular Collision Risk Assessment on the Highway Bridges in South Korea (국내 고속도로 교량의 차량 충돌 위험도 평가)

  • Min, Geun-Hyung;Kim, Woo-Seok;Cho, Jun-Sang;Gil, Heung-Bae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.9-17
    • /
    • 2016
  • Vehicle collision to bridges has been known as one of the causes of bridge collapse, and the emergency plans and disaster management has been recently emphasized to secure public safety. This study conducted risk assessment of vehicular collision to bridges for highway bridges in Korea. Risk assessment consists of three steps; preliminary risk analysis(PRA), simplified risk analysis(SRA) and detailed risk analysis(DRA). The PRA firstly screens out the possibility of occurrence of the event. The SRA identifies influencial factors to risk of the event and evaluates risk scores to determine risk levels and necessity of DRA that investigates the risk of the bridge in detail. This study focuses on the methodology of the risk assessment, especially the SRA, and the stratification methods which evaluate risk levels of vehicular collision. The analysis results were compared to the reported vehicular collision accidents. The proposed method can be utilized in similar disaster management area.

Collision Avoidance Method Based-on Directional Antenna in Vehicular Ad Hoc Networks (Vehicular Ad Hoc Networks에서 방향성 안테나기반 충돌 회피 기법)

  • Kim, Kyung-Jun
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.6
    • /
    • pp.627-633
    • /
    • 2008
  • In the case of traffic accidents, the broadcasting methods used in the mobile ad hoc network (MANET) cannot applied to transmit reliable message since moving high-speed in vehicular ad hoc networks (VANET) environments. In this paper, in order to guarantee transmitting reliable messages, we propose a collision avoidance method based-on directional antenna in VANET. In order to reduce interference from omni-broadcasting and to avoid hidden node problem from moving high-speed, we employed a forward-handed and backward directional antenna. The authors simulated the proposed method based on directional antenna and showed that the proposed method has been improved in respect to network utilization compared to existing VANET protocols.

  • PDF

Unmanned aerial vehicle routing algorithm using vehicular communication systems (차량 통신 시스템 기반 UAV 라우팅 알고리즘)

  • Kim, Ryul;Joo, Yang-Ick
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.622-628
    • /
    • 2016
  • The prosperity of IT technologies and the removal of restrictions regarding Unmanned Aerial Vehicles (UAVs), also known as drones, have driven growth in their popularity. However, without a proper solution to the problem of accident avoidance for UAVs, this popularity increases the potential for collisions between UAVs and between UAV and terrain features. These collisions can occur because UAVs to date have flown using radio control or image recognition based autonomous navigation. Therefore, we propose efficient UAV routing schemes to tackle the collision problem using vehicular communication systems. Performance evaluation by computer simulation shows that the proposed methods effectively reduce the collision probability and improve the routing efficiency of the UAV. Furthermore, the proposed algorithms are compatible and can be directly applied with small overhead to the commercial vehicular communication system implementation.

A TDMA-based MAC protocol in hybrid-vehicular communication systems for preventing a chain-reaction collision on a highway (하이브리드 차량 통신 시스템에서 연쇄 추돌 사고 방지를 위한 TDMA 기반 MAC 프로토콜)

  • Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.10 no.8
    • /
    • pp.179-184
    • /
    • 2012
  • A car accident on a highway occurs a chain-reaction collision because of a vehicle's fast velocity. In order to prevent it, the accident vehicle should broadcast a safe message to its neighbors. If there are many neighbor nodes, a frame collision probability is high. To solve this, it was proposed for a system as a previous study to send a safe message without frame-collision using separating channels. However, the separation of multiple channels make feasibility low because of increasing hardware's development cost and complexity. In this paper, we proposes a TDMA-based MAC protocol using a single channel. As a result, we show the frame reception success rate of our protocol was almost the same as the previous protocol.

Centralized routing method of unmanned aerial vehicle using vehicular Ad Hoc networks (차량 네트워크 기반 중앙관리형 무인비행체 경로 유도 시스템)

  • Kim, Ryul;Joo, Yang-Ick
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.830-835
    • /
    • 2016
  • With the relaxation of regulations on unmanned aerial vehicles (UAVs) in the USA, the development of related industries is expected. Hence, it is anticipated that the number the UAVs will reach approximately 600,000 in the USA in 2017. However, automated flights of commercial UAVs are restricted owing to concerns about accidents. To deal with the possibility of collisions, several studies on collision prevention and the routing of UAVs have been conducted. However, these studies do not deal with various situations dynamically or provide efficient solutions. Therefore, we propose a centralized routing method for the UAV that uses vehicular networks. In the proposed scheme, vehicular networks regard UAVs as data packets to be routed. Accordingly, the proposed method reduces UAV processing power required for route searches. In addition, the routing efficiency for UAV flight paths can be improved since congestion can be minimized by using a vehicular network.

An Enhanced Message Priority Mechanism in IEEE 802.11p Based Vehicular Networks

  • Liu, Chang;Chung, Sang-Hwa;Jeong, Han-You;Jung, Ik-Joo
    • Journal of Information Processing Systems
    • /
    • v.11 no.3
    • /
    • pp.465-482
    • /
    • 2015
  • IEEE 802.11p is a standard MAC protocol for wireless access in vehicular environments (WAVEs). If a packet collision happens when a safety message is sent out, IEEE 802.11p chooses a random back-off counter value in a fixed-size contention window. However, depending on the random choice of back-off counter value, it is still possible that less important messages are sent out first while more important messages are delayed longer until sent out. In this paper, we present a new scheme for safety message scheduling, called the enhanced message priority mechanism (EMPM). It consists of the following two components: the benefit-value algorithm, which calculates the priority of the messages depending on the speed, deceleration, and message lifetime; and the back-off counter selection algorithm, which chooses the non-uniform back-off counter value in order to reduce the collision probability and to enhance the throughput of the highly beneficial messages. Numerical results show that the EMPM can significantly improve the throughput and delay of messages with high benefits when compared with existing MAC protocols. Consequently, the EMPM can provide better QoS support for the more important and urgent messages.

A Study of Collision Avoidance Algorithm Based on Multi-Beacon in the Vehicular Ad-hoc Network (VANET 환경에서 멀티 비콘을 적용한 충돌 회피 알고리즘에 관한 연구)

  • Kim, Jae-Wan;Eom, Doo-Seop
    • Journal of Information Technology Services
    • /
    • v.11 no.4
    • /
    • pp.195-213
    • /
    • 2012
  • In ubiquitous environments, the Intelligent Transportation System (ITS) protocol is a typical service used to improve the quality of life for humans. The Vehicular Ad-hoc Network (VANET) protocol, a part of ITS, needs further study with regards to its support for high reliability, high speed mobility, data transmission efficiency, and so on. The IEEE 802.11 standard provides a high data rate channel, but it was designed for peer-to-peer network protocols. IEEE 802.11p also provides a high data rate channel, however, it only facilitates communication between roadside and on-board equipment. A VANET has characteristics that enable its topology to change rapidly; it can also be expanded to a multi-hop range network during communication. Therefore, the VANET protocol needs a way to infer the current topology information relating to VANET equipped vehicles. In this paper, we present the Multi-Beacon MAC Protocol, and propose a method to resolve the problem of beacon collisions in VANET through the use of this Multi-Beacon MAC protocol. Evaluation of the performance of Multi-Beacon MAC protocol by means of both mathematical analyses and simulation experiments indicate that the proposed method can effectively reduce beacon collisions and improve the throughput and the delay between vehicles in VANET systems.

A Study on Packet Collision Avoidance Method in Vehicular Ad Hoc Network (자동차 환경에서의 패킷 충돌 회피 방법에 대한 연구)

  • Lee, Min-Woo;Lim, Jae-Hoon;Kim, Min-Ki;Park, Gwi-Tae
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.201-203
    • /
    • 2009
  • In the VANET, density is a most important factor for reception rate of packet. So, we have to find solutions to reduce packet collision. There are two approaches. First, packet collision avoid by controlling transmission interval. Second, packet collision avoid by controlling transmission power. In this paper, we propose a simple method to reduce a packet collision by controlling transmission power. It uses the number of neighbors and adaptive controlling method. This method have better performance about packet reception rate.

  • PDF