• Title/Summary/Keyword: Vehicular Platoon

Search Result 2, Processing Time 0.014 seconds

The Evaluation of Driver's Physiology Signal and Sensibility according to the Change of Speed and the Gap of Platoon on AHS (AHS에서 차량군의 속도와 거리 변화에 따른 운전자의 생체신호와 감성 평가)

  • Jeon, Yong-Uk;Park, Beom
    • Journal of the Ergonomics Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.15-28
    • /
    • 2003
  • The one of the most important factors is the platoon design on developing AH3(Advanced Highway System), as it is related to traffic efficiency and drivers' safety. This study was evaluated that how much speed is comfortable for drivers and how long distance is appropriate for vehicular gap of platoon by measuring drivers' physiology signal and sensibility. A fixed-based AHS simulator was developed by using a real vehicle cockpit and the restructured part of Korean highway for human factors evaluation. The EEG(electroencephalogram), ECG (electrocardiogram) and GSR(Galvanic Skin Response) were measured for obtaining drivers' physiology signal according to the change of speed and gap. The brain wave(${\alpha},\;{\beta},\;{\delta},\;{\theta}$) by EEG, the response of the autonomic nervous system. the sympathetic and parasympathetic nervous system, by ECG, and relax-arousal situation by GSR were analyzed. The SD(Semantic Differential) method was also applied to evaluate drivers' sensibility by 5-grade evaluation scale with 96 adjectives. SSQ(Simulator Sickness Questionnaire) was used to measure the simulator sickness of pre and post driving, two times. As the results, drivers were comfortable with 120km/h speed of platoon and lam to 15m vehicular distance. The results of this study may differ from the adaption of the reality because of many parameters. However, the purpose of this study is show to significant results of the drivers' safety and the acceptability of human factors evaluation.

Topology-Based Flow-Oriented Adaptive Network Coding-Aware Routing Scheme for VANETs

  • Iqbal, Muhammad Azhar;Dai, Bin;Islam, Muhammad Arshad;Aleem, Muhammad;Vo, Nguyen-Son
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2044-2062
    • /
    • 2018
  • Information theory progression along with the advancements being made in the field of Vehicular Ad hoc NETworks (VANETs) supports the use of coding-aware opportunistic routing for efficient data forwarding. In this work, we propose and investigate an adaptive coding-aware routing scheme in a specific VANET scenario known as a vehicular platoon. Availability of coding opportunities may vary with time and therefore, the accurate identification of available coding opportunities at a specific time is a quite challenging task in the highly dynamic scenario of VANETs. In the proposed approach, while estimating the topology of the network at any time instance, a forwarding vehicle contemplates the composition of multiple unicast data flows to encode the correct data packets that can be decoded successfully at destinations. The results obtained by using OMNeT++ simulator reveal that higher throughput can be achieved with minimum possible packet transmissions through the proposed adaptive coding-aware routing approach. In addition, the proposed adaptive scheme outperforms static transmissions of the encoded packets in terms of coding gain, transmission percentage, and encoded packet transmission. To the best of our knowledge, the use of coding-aware opportunistic routing has not been exploited extensively in available literature with reference to its implications in VANETs.