• 제목/요약/키워드: Vehicular Edge Computing

검색결과 13건 처리시간 0.018초

A Context-aware Task Offloading Scheme in Collaborative Vehicular Edge Computing Systems

  • Jin, Zilong;Zhang, Chengbo;Zhao, Guanzhe;Jin, Yuanfeng;Zhang, Lejun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권2호
    • /
    • pp.383-403
    • /
    • 2021
  • With the development of mobile edge computing (MEC), some late-model application technologies, such as self-driving, augmented reality (AR) and traffic perception, emerge as the times require. Nevertheless, the high-latency and low-reliability of the traditional cloud computing solutions are difficult to meet the requirement of growing smart cars (SCs) with computing-intensive applications. Hence, this paper studies an efficient offloading decision and resource allocation scheme in collaborative vehicular edge computing networks with multiple SCs and multiple MEC servers to reduce latency. To solve this problem with effect, we propose a context-aware offloading strategy based on differential evolution algorithm (DE) by considering vehicle mobility, roadside units (RSUs) coverage, vehicle priority. On this basis, an autoregressive integrated moving average (ARIMA) model is employed to predict idle computing resources according to the base station traffic in different periods. Simulation results demonstrate that the practical performance of the context-aware vehicular task offloading (CAVTO) optimization scheme could reduce the system delay significantly.

Software-Defined Cloud-based Vehicular Networks with Task Computation Management

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.419-421
    • /
    • 2018
  • Cloud vehicular networks are a promising paradigm to improve vehicular through distributing computation tasks between remote clouds and local vehicular terminals. Software-Defined Network(SDN) can bring advantages to Intelligent Transportation System(ITS) through its ability to provide flexibility and programmability through a logically centralized controlled cluster that has a full comprehension of view of the network. However, as the SDN paradigm is currently studied in vehicular ad hoc networks(VANETs), adapting it to work on cloud-based vehicular network requires some changes to address particular computation features such as task computation of applications of cloud-based vehicular networks. There has been initial work on briging SDN concepts to vehicular networks to reduce the latency by using the fog computing technology, but most of these studies do not directly tackle the issue of task computation. This paper proposes a Software-Defined Cloud-based vehicular Network called SDCVN framework. In this framework, we study the effectiveness of task computation of applications of cloud-based vehicular networks with vehicular cloud and roadside edge cloud. Considering the edge cloud service migration due to the vehicle mobility, we present an efficient roadside cloud based controller entity scheme where the tasks are adaptively computed through vehicular cloud mode or roadside computing predictive trajectory decision mode. Simulation results show that our proposal demonstrates a stable and low route setup time in case of installing the forwarding rules of the routing applications because the source node needs to contact the controller once to setup the route.

  • PDF

Software-Defined Cloud-based Vehicular Networks with Task Computation Management

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.238-240
    • /
    • 2018
  • Cloud vehicular networks are a promising paradigm to improve vehicular through distributing computation tasks between remote clouds and local vehicular terminals. Software-Defined Network(SDN) can bring advantages to Intelligent Transportation System(ITS) through its ability to provide flexibility and programmability through a logically centralized controlled cluster that has a full comprehension of view of the network. However, as the SDN paradigm is currently studied in vehicular ad hoc networks(VANETs), adapting it to work on cloud-based vehicular network requires some changes to address particular computation features such as task computation of applications of cloud-based vehicular networks. There has been initial work on briging SDN concepts to vehicular networks to reduce the latency by using the fog computing technology, but most of these studies do not directly tackle the issue of task computation. This paper proposes a Software-Defined Cloud-based vehicular Network called SDCVN framework. In this framework, we study the effectiveness of task computation of applications of cloud-based vehicular networks with vehicular cloud and roadside edge cloud. Considering the edge cloud service migration due to the vehicle mobility, we present an efficient roadside cloud based controller entity scheme where the tasks are adaptively computed through vehicular cloud mode or roadside computing predictive trajectory decision mode. Simulation results show that our proposal demonstrates a stable and low route setup time in case of installing the forwarding rules of the routing applications because the source node needs to contact the controller once to setup the route.

  • PDF

A Study of Mobile Edge Computing System Architecture for Connected Car Media Services on Highway

  • Lee, Sangyub;Lee, Jaekyu;Cho, Hyeonjoong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권12호
    • /
    • pp.5669-5684
    • /
    • 2018
  • The new mobile edge network architecture has been required for an increasing amount of traffic, quality requirements, advanced driver assistance system for autonomous driving and new cloud computing demands on highway. This article proposes a hierarchical cloud computing architecture to enhance performance by using adaptive data load distribution for buses that play the role of edge computing server. A vehicular dynamic cloud is based on wireless architecture including Wireless Local Area Network and Long Term Evolution Advanced communication is used for data transmission between moving buses and cars. The main advantages of the proposed architecture include both a reduction of data loading for top layer cloud server and effective data distribution on traffic jam highway where moving vehicles require video on demand (VOD) services from server. Through the description of real environment based on NS-2 network simulation, we conducted experiments to validate the proposed new architecture. Moreover, we show the feasibility and effectiveness for the connected car media service on highway.

Task offloading under deterministic demand for vehicular edge computing

  • Haotian Li ;Xujie Li ;Fei Shen
    • ETRI Journal
    • /
    • 제45권4호
    • /
    • pp.627-635
    • /
    • 2023
  • In vehicular edge computing (VEC) networks, the rapid expansion of intelligent transportation and the corresponding enormous numbers of tasks bring stringent requirements on timely task offloading. However, many tasks typically appear within a short period rather than arriving simultaneously, which makes it difficult to realize effective and efficient resource scheduling. In addition, some key information about tasks could be learned due to the regular data collection and uploading processes of sensors, which may contribute to developing effective offloading strategies. Thus, in this paper, we propose a model that considers the deterministic demand of multiple tasks. It is possible to generate effective resource reservations or early preparation decisions in offloading strategies if some feature information of the deterministic demand can be obtained in advance. We formulate our scenario as a 0-1 programming problem to minimize the average delay of tasks and transform it into a convex form. Finally, we proposed an efficient optimal offloading algorithm that uses the interior point method. Simulation results demonstrate that the proposed algorithm has great advantages in optimizing offloading utility.

Hierarchical Resource Management Framework and Multi-hop Task Scheduling Decision for Resource-Constrained VEC Networks

  • Hu, Xi;Zhao, Yicheng;Huang, Yang;Zhu, Chen;Yao, Jun;Fang, Nana
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권11호
    • /
    • pp.3638-3657
    • /
    • 2022
  • In urban vehicular edge computing (VEC) environments, one edge server always serves many task requests in its coverage which results in the resource-constrained problem. To resolve the problem and improve system utilization, we first design a general hierarchical resource management framework based on typical VEC network structures. Following the framework, a specific interacting protocol is also designed for our decision algorithm. Secondly, a greedy bidding-based multi-hop task scheduling decision algorithm is proposed to realize effective task scheduling in resource-constrained VEC environments. In this algorithm, the goal of maximizing system utility is modeled as an optimization problem with the constraints of task deadlines and available computing resources. Then, an auction mechanism named greedy bidding is used to match task requests to edge servers in the case of multiple hops to maximize the system utility. Simulation results show that our proposal can maximize the number of tasks served in resource constrained VEC networks and improve the system utility.

협력적인 차량 엣지 컴퓨팅에서의 태스크 마이그레이션 (Task Migration in Cooperative Vehicular Edge Computing)

  • 문성원;임유진
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제10권12호
    • /
    • pp.311-318
    • /
    • 2021
  • 최근 사물인터넷의 기술이 빠르게 발전하면서 실시간 및 고성능의 처리를 요구하는 서비스들을 위해 멀티 액세스 엣지 컴퓨팅(MEC)이 차세대 기술로 부상하고 있다. 제한적인 서비스 영역을 가지는 MEC 사이에서 사용자들의 잦은 이동성은 MEC 환경에서 다뤄야 할 문제 중 하나이다. 본 논문에서는 이동성이 많은 차량 엣지 컴퓨팅 환경(VEC)을 고려하였으며, 강화 학습 기법의 일종인 DQN을 이용하여 마이그레이션 여부와 대상을 결정하는 태스크 마이그레이션 기법을 제안하였다. 제안한 기법의 목표는 차량 엣지 컴퓨팅 서버(VECS)들의 큐잉 지연시간의 차이를 이용한 로드 밸런싱을 고려하여 QoS 만족도 향상과 시스템의 처리량을 향상시키는 것이다. 제안한 기법을 다른 기법들과의 성능 비교를 통해 QoS 만족도 측면에서 약 14-49%, 서비스 거절률 측면에서는 약 14-38%로 더 좋은 성능을 보임을 확인하였다.

Computation Offloading with Resource Allocation Based on DDPG in MEC

  • Sungwon Moon;Yujin Lim
    • Journal of Information Processing Systems
    • /
    • 제20권2호
    • /
    • pp.226-238
    • /
    • 2024
  • Recently, multi-access edge computing (MEC) has emerged as a promising technology to alleviate the computing burden of vehicular terminals and efficiently facilitate vehicular applications. The vehicle can improve the quality of experience of applications by offloading their tasks to MEC servers. However, channel conditions are time-varying due to channel interference among vehicles, and path loss is time-varying due to the mobility of vehicles. The task arrival of vehicles is also stochastic. Therefore, it is difficult to determine an optimal offloading with resource allocation decision in the dynamic MEC system because offloading is affected by wireless data transmission. In this paper, we study computation offloading with resource allocation in the dynamic MEC system. The objective is to minimize power consumption and maximize throughput while meeting the delay constraints of tasks. Therefore, it allocates resources for local execution and transmission power for offloading. We define the problem as a Markov decision process, and propose an offloading method using deep reinforcement learning named deep deterministic policy gradient. Simulation shows that, compared with existing methods, the proposed method outperforms in terms of throughput and satisfaction of delay constraints.

엣지 컴퓨팅을 이용하여 자율주행에 최적화된 지능형 교통 시스템 연구(ITS) (Intelligent Transportation System (ITS) research optimized for autonomous driving using edge computing)

  • 홍성혁
    • 산업과 과학
    • /
    • 제3권1호
    • /
    • pp.23-29
    • /
    • 2024
  • 본 연구에서는 자율 주행을 위한 지능형 교통 시스템(ITS)을 최적화하는 데 있어 엣지 컴퓨팅의 혁신적인 잠재력을 연구하였다. 방대한 양의 데이터를 로컬에서 실시간으로 처리하는 엣지 컴퓨팅의 능력은 신속한 의사 결정 및 향상된 안전 조치를 포함하여 자율주행차의 중요한 요구 사항을 해결하는 데 필수 요소이다. 엣지 컴퓨팅과 기존 ITS 인프라의 통합을 탐구하고, 현지화된 데이터 처리가 대기 시간을 크게 줄여 자율주행차의 반응성을 향상시키는 방법을 강조한다. 실시간 교통 관리, 충돌 방지 시스템 및 동적 경로 최적화를 지원하는 강력한 프레임워크를 집합적으로 형성하는 엣지서버, 센서 및 V2X(Vehicle-to-Everything) 통신 기술의 배포를 검토한다. 또한 본 연구는 보안, 데이터 통합, 시스템 확장성 등 ITS에서 엣지 컴퓨팅을 구현하는 데 있어 가장 중요한 과제를 다루며 잠재적인 솔루션과 향후 연구 방향에 대한 통찰력을 제공한다. 이 논문은 완전 자율 주행이라는 비전을 실현하는 데 있어 엣지 컴퓨팅의 중추적인 역할을 강조하고, 보다 안전하고 효율적이며 지속 가능한 교통 시스템을 달성하는 데 기여하는 논문이다.

차량 엣지 컴퓨팅 네트워크에서 로드 밸런싱을 위한 UAV-MEC 오프로딩 및 마이그레이션 결정 알고리즘 (UAV-MEC Offloading and Migration Decision Algorithm for Load Balancing in Vehicular Edge Computing Network)

  • 신아영;임유진
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권12호
    • /
    • pp.437-444
    • /
    • 2022
  • 최근 무선 네트워크에서 발생하는 계산 집약적이고 지연시간에 민감한 태스크를 처리하기 위해 모바일 엣지 서비스에 대한 연구가 진행되고 있다. 하지만 지상에 고정되어 있는 MEC는 출퇴근 시간과 같이 태스크 처리 요청이 일시적으로 급증하는 상황에 대해 유연하게 대처할 수 없다. 이를 해결하기 위해 UAV(Unmanned Aerial Vehicle)를 추가로 이용해 모바일 엣지 서비스를 제공하는 기술이 등장하였다. UAV는 지상 MEC 서버와 달리 배터리 용량이 제한되어 있어 UAV MEC 서버 간 로드 밸런싱을 통해 에너지 효율성을 최적화 하는 것이 필요하다. 따라서 본 논문에서는 UAV의 에너지 상태와 차량의 이동성을 고려하며 유전 알고리즘 기반의 태스크 오프로딩과 Q-learning 기반의 태스크 마이그레이션을 통한 로드 밸런싱 기법을 제안한다. 제안 시스템의 성능을 평가하기 위해 차량 속도와 수에 따른 실험을 진행하고, 로드 분산, 에너지 사용량, 통신 오버헤드, 지연 시간 만족도 측면에서 성능을 분석하였다.