• Title/Summary/Keyword: Vehicular Ad hoc NETworks (VANETs)

Search Result 76, Processing Time 0.02 seconds

A RSU-Aided Resource Search and Cloud Construction Mechanism in VANETs (차량 네트워크에서 RSU를 이용한 리소스 검색 및 클라우드 구축 방안)

  • Lee, Yoonhyeong;Lee, Euisin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.3
    • /
    • pp.67-76
    • /
    • 2020
  • With the fast development in wireless communications and vehicular technologies, vehicular ad hoc networks (VANETs) have enabled to deliver data between vehicles. Recently, VANETs introduce a Vehicular Cloud (VC) model for collaborating to share and use resources of vehicles to create value-added services. To construct a VC, a vehicle should search vehicles that intend to provide their own resource. The single-hop search cannot search enough provider vehicles due to a small coverage and non-line-of-sights of communications. On the other hand, the multi-hop search causes very high traffics for large coverage searching and frequent connection breakages. Recently, many Roadside Units (RSUs) have been deployed on roads to collect the information of vehicles in their own coverages and to connect them to Internet. Thus, we propose a RSU-aided vehicular resource search and cloud construction mechanism in VANETS. In the proposed mechanism, a RSU collects the information of location and mobility of vehicles and selects provider vehicles enabled to provide resources needed for constructing a VC of a requester vehicle based on the collected information. In the proposed mechanism, the criteria for determining provider vehicles to provide resources are the connection duration between each candidate vehicle and the requester vehicle, the resource size of each candidate vehicle, and its connection starting time to the requester vehicle. Simulation results verify that the proposed mechanism achieves better performance than the existing mechanism.

Forwarding Protocol Along with Angle Priority in Vehicular Networks (차량 통신망에서 Angle 우선순위를 가진 Forwarding 프로토콜)

  • Yu, Suk-Dea;Lee, Dong-Chun
    • Convergence Security Journal
    • /
    • v.10 no.1
    • /
    • pp.41-48
    • /
    • 2010
  • Greedy protocols show good performance in Vehicular Ad-hoc Networks (VANETs) environment in general. But they make longer routes causing by surroundings or turn out routing failures in some cases when there are many traffic signals which generate empty streets temporary, or there is no merge roads after a road divide into two roads. When a node selects the next node simply using the distance to the destination node, the longer route is made by traditional greedy protocols in some cases and sometimes the route ends up routing failure. Most of traditional greedy protocols just take into account the distance to the destination to select a next node. Each node needs to consider not only the distance to the destination node but also the direction to the destination while routing a packet because of geographical environment. The proposed routing scheme considers both of the distance and the direction for forwarding packets to make a stable route. And the protocol can configure as the surrounding environment. We evaluate the performance of the protocol using two mobility models and network simulations. Most of network performances are improved rather than in compared with traditional greedy protocols.

An Efficient Optimization Technique for Node Clustering in VANETs Using Gray Wolf Optimization

  • Khan, Muhammad Fahad;Aadil, Farhan;Maqsood, Muazzam;Khan, Salabat;Bukhari, Bilal Haider
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4228-4247
    • /
    • 2018
  • Many methods have been developed for the vehicles to create clusters in vehicular ad hoc networks (VANETs). Usually, nodes are vehicles in the VANETs, and they are dynamic in nature. Clusters of vehicles are made for making the communication between the network nodes. Cluster Heads (CHs) are selected in each cluster for managing the whole cluster. This CH maintains the communication in the same cluster and with outside the other cluster. The lifetime of the cluster should be longer for increasing the performance of the network. Meanwhile, lesser the CH's in the network also lead to efficient communication in the VANETs. In this paper, a novel algorithm for clustering which is based on the social behavior of Gray Wolf Optimization (GWO) for VANET named as Intelligent Clustering using Gray Wolf Optimization (ICGWO) is proposed. This clustering based algorithm provides the optimized solution for smooth and robust communication in the VANETs. The key parameters of proposed algorithm are grid size, load balance factor (LBF), the speed of the nodes, directions and transmission range. The ICGWO is compared with the well-known meta-heuristics, Multi-Objective Particle Swarm Optimization (MOPSO) and Comprehensive Learning Particle Swarm Optimization (CLPSO) for clustering in VANETs. Experiments are performed by varying the key parameters of the ICGWO, for measuring the effectiveness of the proposed algorithm. These parameters include grid sizes, transmission ranges, and a number of nodes. The effectiveness of the proposed algorithm is evaluated in terms of optimization of number of cluster with respect to transmission range, grid size and number of nodes. ICGWO selects the 10% of the nodes as CHs where as CLPSO and MOPSO selects the 13% and 14% respectively.

A congestion control scheme estimating global channel busy ratio in VANETs

  • Kim, Tae-won;Jung, Jae-il;Lee, Joo-young
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.115-122
    • /
    • 2017
  • In vehicular safety service, every vehicle broadcasts Basic Safety Message (BSM) periodically to inform neighbor vehicles of host vehicle information. However, this can cause network congestion in a region that is crowded with vehicles resulting in a reduction in the message delivery ratio and an increase in the end-to-end delay. Therefore, it could destabilize the vehicular safety service system. In this paper, in order to improve the congestion control and to consider the hidden node problem, we propose a congestion control scheme using entire network congestion level estimation combined with transmission power control, data rate control and time slot based transmission control algorithm. The performance of this scheme is evaluated using a Qualnet network simulator. The simulation result shows that our scheme mitigates network congestion in heavy traffic cases and enhances network capacity in light traffic cases, so that packet error rate is perfectly within 10% and entire network load level is maintained within 60~70%. Thus, it can be concluded that the proposed congestion control scheme has quite good performance.

Greedy Anycast Forwarding Protocol based on Vehicle Moving Direction and Distance (차량의 이동 방향과 거리 기반의 그리디 애니캐스트 포워딩 프로토콜)

  • Cha, Siho;Lee, Jongeon;Ryu, Minwoo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.1
    • /
    • pp.79-85
    • /
    • 2017
  • Vehicular ad-hoc networks (VANETs) cause link disconnection problems due to the rapid speed and the frequent moving direction change of vehicles. Link disconnection in vehicle-to-vehicle communication is an important issue that must be solved because it decreases the reliability of packet forwarding. From the characteristics of VANETs, greedy forwarding protocols using the position information based on the inter-vehicle distance have gained attention. However, greedy forwarding protocols do not perform well in the urban environment where the direction of the vehicle changes greatly. It is because greedy forwarding protocols select the neighbor vehicle that is closest to the destination vehicle as the next transmission vehicle. In this paper, we propose a greedy anycast forwarding (GAF) protocol to improve the reliability of the inter-vehicle communication. The proposed GAF protocol combines the greedy forwarding scheme and the anycast forwarding method. Simulation results show that the GAF protocol can provide a better packet delivery rate than existing greedy forwarding protocols.

Improved Physical Layer Implementation of VANETs

  • Khan, Latif Ullah;Khattak, M. Irfan;Khan, Naeem;Khan, Atif Sardar;Shafi, M.
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.3
    • /
    • pp.142-152
    • /
    • 2014
  • Vehicular Ad-hoc Networks (VANETs) are comprised of wireless mobile nodes characterized by a randomly changing topology, high mobility, availability of geographic position, and fewer power constraints. Orthogonal Frequency Division Multiplexing (OFDM) is a promising candidate for the physical layer of VANET because of the inherent characteristics of the spectral efficiency and robustness to channel impairments. The susceptibility of OFDM to Inter-Carrier Interference (ICI) is a challenging issue. The high mobility of nodes in VANET causes higher Doppler shifts, which results in ICI in the OFDM system. In this paper, a frequency domain com-btype channel estimation was used to cancel out ICI. The channel frequency response at the pilot tones was estimated using a Least Square (LS) estimator. An efficient interpolation technique is required to estimate the channel at the data tones with low interpolation error. This paper proposes a robust interpolation technique to estimate the channel frequency response at the data subcarriers. The channel induced noise tended to degrade the Bit Error Rate (BER) performance of the system. Parallel concatenated Convolutional codes were used for error correction. At the decoding end, different decoding algorithms were considered for the component decoders of the iterative Turbo decoder. A performance and complexity comparison among the various decoding algorithms was also carried out.

A Robust and Efficient Anonymous Authentication Protocol in VANETs

  • Jung, Chae-Duk;Sur, Chul;Park, Young-Ho;Rhee, Kyung-Hyune
    • Journal of Communications and Networks
    • /
    • v.11 no.6
    • /
    • pp.607-614
    • /
    • 2009
  • Recently, Lu et al. proposed an efficient conditional privacy preservation protocol, named ECPP, based on group signature scheme for generating anonymous certificates from roadside units (RSUs). However, ECPP does not provide unlinkability and traceability when multiple RSUs are compromised. In this paper, we make up for the limitations and propose a robust and efficient anonymous authentication protocol without loss of efficiency as compared with ECPP. Furthermore, in the proposed protocol, RSUs can issue multiple anonymous certificates to an OBU to alleviate system overheads for mutual authentication between OBUs and RSUs. In order to achieve these goals, we consider a universal re-encryption scheme and identity-based key establishment scheme as our building blocks. Several simulations are conducted to verify the efficiency and effectiveness of the proposed protocol by comparing with those of the existing ECPP.

An Efficient Local Map Building Scheme based on Data Fusion via V2V Communications

  • Yoo, Seung-Ho;Choi, Yoon-Ho;Seo, Seung-Woo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.2
    • /
    • pp.45-56
    • /
    • 2013
  • The precise identification of vehicle positions, known as the vehicle localization problem, is an important requirement for building intelligent vehicle ad-hoc networks (VANETs). To solve this problem, two categories of solutions are proposed: stand-alone and data fusion approaches. Compared to stand-alone approaches, which use single information including the global positioning system (GPS) and sensor-based navigation systems with differential corrections, data fusion approaches analyze the position information of several vehicles from GPS and sensor-based navigation systems, etc. Therefore, data fusion approaches show high accuracy. With the position information on a set of vehicles in the preprocessing stage, data fusion approaches is used to estimate the precise vehicular location in the local map building stage. This paper proposes an efficient local map building scheme, which increases the accuracy of the estimated vehicle positions via V2V communications. Even under the low ratio of vehicles with communication modules on the road, the proposed local map building scheme showed high accuracy when estimating the vehicle positions. From the experimental results based on the parameters of the practical vehicular environments, the accuracy of the proposed localization system approached the single lane-level.

  • PDF

TCA: A Trusted Collaborative Anonymity Construction Scheme for Location Privacy Protection in VANETs

  • Zhang, Wenbo;Chen, Lin;Su, Hengtao;Wang, Yin;Feng, Jingyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3438-3457
    • /
    • 2022
  • As location-based services (LBS) are widely used in vehicular ad-hoc networks (VANETs), location privacy has become an utmost concern. Spatial cloaking is a popular location privacy protection approach, which uses a cloaking area containing k-1 collaborative vehicles (CVs) to replace the real location of the requested vehicle (RV). However, all CVs are assumed as honest in k-anonymity, and thus giving opportunities for dishonest CVs to submit false location information during the cloaking area construction. Attackers could exploit dishonest CVs' false location information to speculate the real location of RV. To suppress this threat, an edge-assisted Trusted Collaborative Anonymity construction scheme called TCA is proposed with trust mechanism. From the design idea of trusted observations within variable radius r, the trust value is not only utilized to select honest CVs to construct a cloaking area by restricting r's search range but also used to verify false location information from dishonest CVs. In order to obtain the variable radius r of searching CVs, a multiple linear regression model is established based on the privacy level and service quality of RV. By using the above approaches, the trust relationship among vehicles can be predicted, and the most suitable CVs can be selected according to RV's preference, so as to construct the trusted cloaking area. Moreover, to deal with the massive trust value calculation brought by large quantities of LBS requests, edge computing is employed during the trust evaluation. The performance analysis indicates that the malicious response of TCA is only 22% of the collaborative anonymity construction scheme without trust mechanism, and the location privacy leakage is about 32% of the traditional Enhanced Location Privacy Preserving (ELPP) scheme.

Data Transmission Performance Study of Wireless Channels over CCN-based VANETs (CCN 기반의 VANET에서 무선 채널에 따른 전송 성능에 관한 연구)

  • Kang, Seung-Seok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.367-373
    • /
    • 2022
  • VANET (Vehicular Ad hoc NETwork) is one of the special cases of the ad hoc networks in which car nodes communicate with each other and/or with RSUs (Road Side Unit) in order for the drivers to receive nearby road traffic information as well as for the passengers to retrieve nearby gas price or hotel information. In case of constructing VANET over CCN, users do not need to specify a destination server address rather to input a key word such as nearby congestion in order to gather surrounding traffic congestion information. Furthermore, each car node caches its retrieved data for forwarding other nodes when requested. In addition, the data transmission is inherently multicast, which implies fast data propagation to the participating car nodes. This paper measures and evaluates the data transmission performance of the VCCN (VANET over CCN) in which nodes are equipped with diverse wireless communication channels. The simulation result indicates that 802.11a shows the best performance of the data transmission against other wireless channels. Moreover, it indicates that VCCN improves overall data transmission and provides benefit to the nodes that request the same traffic information by exploiting inherent multicast communication.