• Title/Summary/Keyword: Vehicular Ad hoc NETworks (VANETs)

Search Result 76, Processing Time 0.025 seconds

On Location Security Solutions in Vehicular Ad Hoc Networks

  • Hussain, Rasheed;Son, Junggab;Oh, Heekuck
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.1053-1056
    • /
    • 2012
  • Location information is considered to be of prime importance in Vehicular Ad Hoc NETworks (VANETs) because important decisions are made based on accurate and sound location information. Vehicles exchange their whereabouts in the form of scheduled beacon messages with their neighbors. These messages contain location, speed, time, and lane information etc. In this paper we aim at the location security in VANET and emphasize on the confidentiality and integrity of location information in case of Nonline-of-Sight (NLoS). For location confidentiality we propose a geolock-based mechanism whereas for location integrity we leverage cooperation among neighbors. In case of NLoS, the verifier vehicle asks its one-hop neighbors in an efficient way to verify the claimed location of the node on his behalf. On the basis of trust values and weightage assigned to neighbors, it is decided whether the verification is sound.

Software-Defined Cloud-based Vehicular Networks with Task Computation Management

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.419-421
    • /
    • 2018
  • Cloud vehicular networks are a promising paradigm to improve vehicular through distributing computation tasks between remote clouds and local vehicular terminals. Software-Defined Network(SDN) can bring advantages to Intelligent Transportation System(ITS) through its ability to provide flexibility and programmability through a logically centralized controlled cluster that has a full comprehension of view of the network. However, as the SDN paradigm is currently studied in vehicular ad hoc networks(VANETs), adapting it to work on cloud-based vehicular network requires some changes to address particular computation features such as task computation of applications of cloud-based vehicular networks. There has been initial work on briging SDN concepts to vehicular networks to reduce the latency by using the fog computing technology, but most of these studies do not directly tackle the issue of task computation. This paper proposes a Software-Defined Cloud-based vehicular Network called SDCVN framework. In this framework, we study the effectiveness of task computation of applications of cloud-based vehicular networks with vehicular cloud and roadside edge cloud. Considering the edge cloud service migration due to the vehicle mobility, we present an efficient roadside cloud based controller entity scheme where the tasks are adaptively computed through vehicular cloud mode or roadside computing predictive trajectory decision mode. Simulation results show that our proposal demonstrates a stable and low route setup time in case of installing the forwarding rules of the routing applications because the source node needs to contact the controller once to setup the route.

  • PDF

Software-Defined Cloud-based Vehicular Networks with Task Computation Management

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.238-240
    • /
    • 2018
  • Cloud vehicular networks are a promising paradigm to improve vehicular through distributing computation tasks between remote clouds and local vehicular terminals. Software-Defined Network(SDN) can bring advantages to Intelligent Transportation System(ITS) through its ability to provide flexibility and programmability through a logically centralized controlled cluster that has a full comprehension of view of the network. However, as the SDN paradigm is currently studied in vehicular ad hoc networks(VANETs), adapting it to work on cloud-based vehicular network requires some changes to address particular computation features such as task computation of applications of cloud-based vehicular networks. There has been initial work on briging SDN concepts to vehicular networks to reduce the latency by using the fog computing technology, but most of these studies do not directly tackle the issue of task computation. This paper proposes a Software-Defined Cloud-based vehicular Network called SDCVN framework. In this framework, we study the effectiveness of task computation of applications of cloud-based vehicular networks with vehicular cloud and roadside edge cloud. Considering the edge cloud service migration due to the vehicle mobility, we present an efficient roadside cloud based controller entity scheme where the tasks are adaptively computed through vehicular cloud mode or roadside computing predictive trajectory decision mode. Simulation results show that our proposal demonstrates a stable and low route setup time in case of installing the forwarding rules of the routing applications because the source node needs to contact the controller once to setup the route.

  • PDF

A Secure Protocol for Location-Aware Services in VANETs (VANET에서 안전한 위치인지 서비스를 위한 보안 프로토콜)

  • Sur, Chul;Park, Youngho;Rhee, Kyung Hyune
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.11
    • /
    • pp.495-502
    • /
    • 2013
  • In this paper, we present an anonymous authentication and location assurance protocol for secure location-aware services over vehicular ad hoc networks (VANETs). In other to achieve our goal, we propose the notion of a location-aware signing key so as to strongly bind geographic location information to cryptographic function while providing conditional privacy preservation which is a desirable property for secure vehicular communications. Furthermore, the proposed protocol provides an efficient procedure based on hash chain technique for revocation checking to effectively alleviate communication and computational costs on vehicles in VANETs. Finally, we demonstrate comprehensive analysis to confirm the fulfillment of the security objectives, and the efficiency and effectiveness of the proposed protocol.

Review on Software-Defined Vehicular Networks (SDVN)

  • Mohammed, Badiea Abdulkarem
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.376-388
    • /
    • 2022
  • The expansion of new applications and business models is being significantly fueled by the development of Fifth Generation (5G) networks, which are becoming more widely accessible. The creation of the newest intelligent vehicular networks and applications is made possible by the use of Vehicular Ad hoc Networks (VANETs) and Software Defined Networking (SDN). Researchers have been concentrating on the integration of SDN and VANET in recent years, and they have examined a variety of issues connected to the architecture, the advantages of software-defined VANET services, and the new features that can be added to them. However, the overall architecture's security and robustness are still in doubt and have received little attention. Furthermore, new security threats and vulnerabilities are brought about by the deployment and integration of novel entities and a number of architectural components. In this study, we comprehensively examine the good and negative effects of the most recent SDN-enabled vehicular network topologies, focusing on security and privacy. We examine various security flaws and attacks based on the existing SDVN architecture. Finally, a thorough discussion of the unresolved concerns and potential future study directions is provided.

Density-Based Opportunistic Broadcasting Protocol for Emergency Situations in V2X Networks

  • Park, Hyunhee;Singh, Kamal Deep;Piamrat, Kandaraj
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.1
    • /
    • pp.26-32
    • /
    • 2014
  • Vehicular-to-anything (V2X) technology is attractive for wireless vehicular ad-hoc networks (VANETs) because it allows for opportunistic choice of a vehicular protocol between vehicular-to-vehicular (V2V) and vehicular-to-infrastructure (V2I) communications. In particular, achieving seamless connectivity in a VANET with nearby network infrastructure is challenging. In this paper, we propose a density-based opportunistic broadcasting (DOB) protocol, in which opportunistic connectivity is carried out by using the nearby infrastructure and opposite vehicles for solving the problems of disconnection and long end-to-end delay times. The performance evaluation results indicate that the proposed DOB protocol outperforms the considered comparative conventional schemes, i.e., the shortest path protocol and standard mobile WiMAX, in terms of the average end-to-end delay, packet delivery ratio, handover latency, and number of lost packets.

Software-Defined Vehicular Networks (SDVN)

  • Al-Mekhlafi, Zeyad Ghaleb
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.231-243
    • /
    • 2022
  • The expansion of new applications and business models is being significantly fueled by the development of Fifth Generation (5G) networks, which are becoming more widely accessible. The creation of the newest intelligent vehicular net- works and applications is made possible by the use of Vehicular Ad hoc Networks (VANETs) and Software Defined Networking (SDN). Researchers have been concentrating on the integration of SDN and VANET in recent years, and they have examined a variety of issues connected to the architecture, the advantages of software defined VANET services, and the new features that can be added to them. However, the overall architecture's security and robustness are still in doubt and have received little attention. Furthermore, new security threats and vulnerabilities are brought about by the deployment and integration of novel entities and several architectural components. In this study, we comprehensively examine the good and negative effects of the most recent SDN-enabled vehicular network topologies, focusing on security and privacy. We examine various security flaws and attacks based on the existing SDVN architecture. Finally, a thorough discussion of the unresolved concerns and potential future study directions is provided.

Infotainment Services Based on Push-Mode Dissemination in an Integrated VANET and 3G Architecture

  • Baiocchi, Andrea;Cuomo, Francesca
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.179-190
    • /
    • 2013
  • Given the bandwidth assignment for dedicated short range communications for use in vehicular ad-hoc network (VANET) and the expected introduction of equipment in the next few years, we elaborate on how VANET can support infotainment services. We define an architectural model for the integration of VANETs and cellular networks, according to a push mode paradigm where VANETs are used primarily to disseminate service announcements and general interest messages. Cooperation with cellular network is addressed by comparing architecture alternatives. A set of information dissemination protocols for VANETs is compared via simulations on a real urban map. Some results from a lab testbed based on IEEE 802.11p boards are presented along with an application developed for Android operating system to demonstrate the concept of the paper.

A Reputation System based on Blockchain for Collaborative Message Delivery over VANETs (VANET 환경에서의 협력적 메시지 전달을 위한 블록체인 기반 평판 시스템)

  • Lee, Kyeong Mo;Rhee, Kyung-Hyune
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1448-1458
    • /
    • 2018
  • Vehicular Ad-Hoc Networks (VANETs) have become one of the active areas of research, standardization, and development because they have tremendous potentials to improve vehicle and road safety, traffic efficiency, and convenience as well as comfort to both drivers and passengers. However, message trustfulness is a challenge because the propagation of false message by malicious vehicles induces unreliable and ineffectiveness of VANETs, Therefore, we need a reliable reputation method to ensure message trustfulness. In this paper, we consider a vulnerability against the Sybil attack of the previous reputation systems based on blockchain and suggest a new reputation system which resists against Sybil attack on the previous system. We propose an initial authentication process as a countermeasure against a Sybil attack and provide a reliable reputation with a cooperative message delivery to cope with message omission. In addition, we use Homomorphic Commitment to protect the privacy breaches in VANETs environment.

An Adaptable Destination-Based Dissemination Algorithm Using a Publish/Subscribe Model in Vehicular Networks

  • Morales, Mildred Madai Caballeros;Haw, Rim;Cho, Eung-Jun;Hong, Choong-Seon;Lee, Sung-Won
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.3
    • /
    • pp.227-242
    • /
    • 2012
  • Vehicular Ad Hoc Networks (VANETs) are highly dynamic and unstable due to the heterogeneous nature of the communications, intermittent links, high mobility and constant changes in network topology. Currently, some of the most important challenges of VANETs are the scalability problem, congestion, unnecessary duplication of data, low delivery rate, communication delay and temporary fragmentation. Many recent studies have focused on a hybrid mechanism to disseminate information implementing the store and forward technique in sparse vehicular networks, as well as clustering techniques to avoid the scalability problem in dense vehicular networks. However, the selection of intermediate nodes in the store and forward technique, the stability of the clusters and the unnecessary duplication of data remain as central challenges. Therefore, we propose an adaptable destination-based dissemination algorithm (DBDA) using the publish/subscribe model. DBDA considers the destination of the vehicles as an important parameter to form the clusters and select the intermediate nodes, contrary to other proposed solutions. Additionally, DBDA implements a publish/subscribe model. This model provides a context-aware service to select the intermediate nodes according to the importance of the message, destination, current location and speed of the vehicles; as a result, it avoids delay, congestion, unnecessary duplications and low delivery rate.