• Title/Summary/Keyword: Vehicle-to-Vehicle Damper

Search Result 197, Processing Time 0.019 seconds

Development of 3-axis Loadcell for Measuring the Side Force of MPV Using Design of Experiment (실험계획법을 이용한 다목적 차량의 측면하중 측정을 위한 3축 로드셀 개발)

  • Chu, Sung-Il;Park, Jun-Hyub;Lee, Jin-Gun;Park, Ji-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.83-93
    • /
    • 2007
  • This paper represents the development of 3-axises loadcell for measuring the side-force of suspension module of MPV(Multi Purposed Vehicle). The side force causes the failure of damper, such as leakage. The loadcell was developed using strain gauges, and the Wheastone bridge circuit to compensate for the cross-talk between the each axises and the measurement error by temperature. Structure analysis of loadcell was accomplished with FEM(Finite Element Method) to optimize the location of strain gages. The design optimization for important factors that have an effect on performance of loadcell was accomplished by using DOE(Design of Experiment). Loadcell was produced and successfully tested, showing good sensitivity and low cross-talk. The cross-talk of the developed loadcell is bellow 5%. The load history was measured at proving ground. The maximum side-force, the longitudinal force, and vertical force of MPV are 4.2 kN, 8.0 kN, and 17.0 kN, respectively, at Belgian road.

A Study on the Passive Vibration Control of Large Scale Solar Array with High Damping Yoke Structure (고댐핑 요크 구조 적용 대형 태양전지판의 수동형 제진에 관한 연구)

  • Park, Jae-Hyeon;Park, Yeon-Hyeok;Park, Sung-Woo;Kang, Soo-Jin;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.1-7
    • /
    • 2022
  • Recently, satellites equipped with high-performance electronics have required higher power consumption because of the advancement of satellite missions. For this reason, the size of the solar panel is gradually increasing to meet the required power budget. Increasing the size and weight of the solar panel is one of the factors that induce the elastic vibration of the flexible solar panel during the highly agile maneuvering of the satellite or the mode of vibration coupling to the satellite or the mode of vibration coupling to the micro-jitter from the on-board appendages. Previously, an additional damper system was applied to reduce the elastic vibration of the solar panel, but the increase in size and mass of system was inevitable. In this study, to overcome the abovementioned limitations, we proposed a high -damping yoke structure consisting of a superplastic SMA(Shape Memory Alloy) laminating a thin FR4 layer with viscoelastic tape on both sides. Therefore, this advantage contributes to system simplicity by reducing vibrations with small volume and mass without additional system. The effectiveness of the proposed superelastic SMA multilayer solar panel yoke was validated through free vibration testing and temperature testing using a solar panel dummy.

An Optimum Design of a Steering Column to Minimize the Injury of a Passenger (승객 상해의 감소를 위한 승용차 조향주의 최적설계)

  • Park, Y.S;Lee, J.Y.;Park, G.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.33-44
    • /
    • 1995
  • As the occupant safety receives more attention from automobile industries. protection systems have been developed quite well. Developed protection systems must be evaluated through real tests in crash environment Since the real tests are extremely expensive. computer simulations are replaced for some prediction of the real test In the computer simulation. it is very crucial to express the real environment precisely in the modeling precess. The energy absorbing(EA) steering system has a very important rote in vehicle crashes because the occupant can hit the system directly. In this study. the EA steering system is modeled precisely. analyzed for the safely and designed by an optimization technology. First. the EA steering system is disassembled by parts and modeled by segments and joints. The segments are modeled by rigid bodies in motion and they have resistances in contact. Spring-damper elements and force-deflection curves are utilized to represent the joints. The body block test is cal lied out to validate. the modeling. When the test results are not enough for the detailed modeling. the differences between tests and simulations are minimized to calculate unknown parameters using optimization. The established model is applied to a crash simulation of a full-car model and tuned again. After the modeling is finished. components of the steering system are designed by an optimization algorithm. In the optimization process. the compound injury of a driver is defined and minimized to determine the chracteristics of the components. The second. order approximation algorithm has been adopted for the optimization.

  • PDF

Numerical performance assessment of Tuned Mass Dampers to mitigate traffic-induced vibrations of a steel box-girder bridge

  • Bayat, Elyas;Bayat, Meysam;Hafezzadeh, Raheb
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.125-134
    • /
    • 2021
  • In this paper, the effects of Tuned Mass dampers (TMDs) on the reduction of the vertical vibrations of a real horizontally curved steel box-girder bridge due to different traffic loads are numerically investigated. The performance of TMDs to reduce the bridge vibrations can be affected by the parameters such as dynamic characteristics of TMDs, the location of TMDs, the speed and weight of vehicles. In the first part of this study, the effects of mass ratio, damping percentage, frequency ratio, and location of TMDs on the performance of TMDs to decrease vertical vibrations of different sections of bridge deck are evaluated. In the second part, the performance of TMD is investigated for different speeds and weights of traffic loads. Results show that the mass ratio of TMDs is the more effective parameter in reducing imposed vertical vibration in comparison with the damping ratio. Furthermore, it is found that TMD is very sensitive to its tuned frequency, i.e., with a little deviation from a suitable frequency, the expected performance of TMD significantly decreased. TMDs have a positive and considerable performance at certain vehicle speeds and this performance declines when the weight of traffic loads is increased. Besides, the results reveal that the highest impact of TMD on the reduction of the vertical vibrations is when free vibrations occur for the bridge deck. In that case, maximum reductions of 24% and 59% are reported in the vertical acceleration of the bridge deck for the forced and free vibration amplitudes, respectively. The maximum reduction of 13% is also obtained for the maximum displacement of the bridge deck. The results are mainly related to the resonance condition.

A Study on Adopting Intelligent Control System in Active Suspension Equipment (능동 현가장치에의 지능형 제어시스템 적용에 관한 연구)

  • Park, Jung-Hyen
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.3
    • /
    • pp.287-293
    • /
    • 2007
  • This paper proposed modelling and design method in suspension system design to analyze active suspension equipment by adopting intelligent robust control theory. Recent in the field of suspension system design it is general to adopt active control scheme for stiffness and damping, and connection with other vehicle stability control equipment is also intricate, it is required for control system scheme to design more robust, higher response and precision control equipment. It is known that active suspension system is better than passive spring-damper system in designing suspension equipment. We analyze suspension system with considering location of front-rear wheel and driving velocity, then design robust control system. Numerical example is shown for validity of intelligent control system design in active suspension system.

  • PDF

Lateral Vibration Reduction of a Maglev Train Using U-shaped Electromagnets (U 자형 전자석을 사용하는 자기부상열차의 횡진동 저감 연구)

  • Han, Jong-Boo;Kim, Ki-Jung;Han, Hyung-Suk;Kim, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1447-1453
    • /
    • 2012
  • For an electromagnetic suspension (EMS)-type urban Maglev train using U-shaped electromagnets, both the vertical and the lateral air gaps for levitation are maintained only by the electromagnet. The train can run over curved rails without active lateral air gap control because the U-shaped electromagnet simultaneously produces both a levitation force and a guidance force, which is dependent on the levitation force. Owing to the passive control of the lateral air gap, the lateral vibration could exceed the limits of the lateral air gap and acceleration. In this study, dynamic analysis of a Maglev train is carried out, and the effectiveness of a lateral damper for vibration reduction is investigated. To more accurately predict the lateral vibration, a Maglev vehicle multibody model including air-sparing, guideway irregularities, electromagnets, and their controls is developed.

Retraction: A numerical study on the fire smoke behavior by operating the fire prevention system in tunnel-type structure (논문 취소: 터널형 구조물의 방재시설 가동에 따른 화재연기 거동에 관한 수치 해석적 연구)

  • Lee, Ho-Hyung;Choi, Pan-Gyu;Lee, Sang-Don;Heo, Won-Ho;Jo, Jong-Bok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.189-199
    • /
    • 2019
  • In this study, behaviors of fire smoke in the operation of disaster prevention facilities (smoke damper, jet fan) in a tunnel-type structure (soundproof tunnel) were investigated numerically and results of the investigation were compared and analyzed. Through the simulation and analysis, it was found that there was a significant change in the patterns of fire smoke between the opening of the ceiling of a fire vehicle and the closing, and it was shown that the critical temperatures of PC and PMMA, main materials of a soundproof tunnel were not exceeded. In addition, the simulation of installation intervals of smoke dampers showed that the maximum temperature of a soundproof tunnel without smoke dampers was $552^{\circ}C$ while it reached $405^{\circ}C$ when smoke dampers were installed at the installation interval of 50 m. The simulation of the operation of a jet fan showed that the maximum temperature of a soundproof tunnel without a jet fan was $549^{\circ}C$ while it reached only $86^{\circ}C$ when a jet fan was operating. Therefore, it is highly expected that they could create a favorable environment for evacuation and protection of soundproofing materials, and it would be necessary to promote basic studies on tunnels serving various functions and purposes.