• Title/Summary/Keyword: Vehicle verification

Search Result 444, Processing Time 0.024 seconds

Development of KOMPSAT-2 Vehicle Dynamic Simulator for Attitude Control Subsystem Functional Verification (인공위성 자세제어 부시스템 기능시험을 위한 KOMPSAT-2 동체 시뮬레이터 개발)

  • 석병석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.956-960
    • /
    • 2004
  • The Vehicle Dynamic Simulator(VDS) is a key equipment of the performance verification of attitude control subsystem and it simulates the real dynamic environment that spacecraft undergoes during mission operation. All the software models and hardware interfaces necessary for the closed-loop simulation of the spacecraft dynamics are implemented. Using VDS, KOMPAT-2 attitude control logic functions and performance was verified. In this paper, the hardware and software configurations of KOMPSAT-2 VDS was described briefly and the information flow and exchanges between software models and actual hardwares during close loop simulation was described in the systematic point of view.

Experimental Verification of Electric Vehicle Using Electric Double Layer Capacitor

  • Ikeda, Hidehiro;Ajishi, Hideki;Hanamoto, Tsuyoshi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.171-178
    • /
    • 2013
  • This paper discusses to conduct experimental verification of two types of micro electric vehicles (EV) in order to realize improvement in electric mileage and shorten a charging time of the battery. First, electric double layer capacitor (EDLC) systems to use as a secondary battery are proposed. The internal resistance of EDLC is small compared with a rechargeable battery, and it is suitable for momentary charge-discharge of EV. Next, control circuits of the capacitors to increase the regenerative electric power are utilized. Then, a novel method to charge a main battery of the EV is introduced. Finally, experimental results demonstrate the validity of the proposed method.

Development of Control Simulator for Integrated Sensor Module of Vehicle (차량용 통합 센서 모듈 제어를 위한 시뮬레이터 개발)

  • Jeon, Jin-Young;Park, Jeong-Yeon;Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.65-70
    • /
    • 2013
  • The integrated sensor module of vehicle combines the functions of rain sensor, auto defog sensor, and sun angle sensor into a single module. These functions originally were applied to work separatively. This integrated sensor module should meet the each performance which appears from the individual modules up to the same level or higher. Therefore, it is important to verify the stability and the accuracy considering the characteristics of the integrated sensor module according to various situations. For the verification, we need to use the actual data of integrated sensor module measured but, a lot of time and money is needed to collect data measured under various circumstances when operating. Thus, through the development of this simulator for the control of the integrated sensor module, we can use it effectively for the initial verification of integrated sensor module by implementing the various situations. In this paper, the simulator for controlling the integrated sensor module which combines vision-based rain sensor, auto defog sensor, auto light sensor, and sun angle sensor has been developed.

Development and Flight Test of Educational Water Rocket CULV-1 for Implementation of Launch Vehicle Separation Sequence and Imaging Data Acquisition (발사체 분리과정모사 및 단계별 영상획득이 가능한 교육용 물로켓 CULV-1 개발 및 비행시험)

  • Lee, Myeongjae;Park, Taeyong;Kang, Soojin;Jang, Sueun;Oh, Hyunung
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.2
    • /
    • pp.14-21
    • /
    • 2016
  • In this study, we proposed a water rocket CULV-1 (Chosun University Launch Vehicle-1). Unlike a conventional water rocket, CULV-1 can perform the booster rocket, fairing, and payload separation like an actual launch vehicle and also the imaging data acquisition. The conceptual and critical design of the proposed CULV-1 have been performed considering the operation characteristics. The verification tests have been performed from subsystem to system level in accordance with the established test specifications and verification procedures. Through the final launch test of the flight model, we have verified the design effectiveness of the proposed separation mechanisms for water rocket applications and the mission requirements of the CULV-1 also have been complied.

Development of Weigh Calculation Method for Pavement Roughness Index Considering Vehicle Wandering Distribution (원더링 분포를 고려한 도로포장 평탄성 지수의 가중치 산정기법 개발)

  • Lee, Jaehoon;Sohn, Ducksu;Park, Jejin;Cho, Yoonho
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.89-96
    • /
    • 2017
  • PURPOSES: This study aims to develop a rational procedure for estimating the pavement roughness index considering vehicle wandering. METHODS : The location analysis of the passing vehicle in the lane was performed by approximately 1.2 million vehicles for verification of the wandering distribution. According to verification result, the distribution follows the normal distribution pattern. The probability density function was estimated using each lane's wandering distribution model. Then the procedure for applying a weighted value into the lane profile was conducted using this function. RESULTS : The modified index, MRIw, with consideration towards applying the wandering weighted value application was computed then compared with MRI. It was found that the Coefficient of Variation for distribution of lateral roughness index in the lane was high in the case of a large difference between each index (i.e., MRIw and MRI) observed. CONCLUSIONS : This result confirms that the new procedure with consideration of the weight factor can successfully improve the lane representative characteristics of the roughness index.

Virtual Environment Modeling for Battery Management System

  • Piao, Chang-Hao;Yu, Qi-Fan;Duan, Chong-Xi;Su, Ling;Zhang, Yan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1729-1738
    • /
    • 2014
  • The offline verification of state of charge estimation, power estimation, fault diagnosis and emergency control of battery management system (BMS) is one of the key technologies in the field of electric vehicle battery system. It is difficult to test and verify the battery management system software in the early stage, especially for algorithms such as system state estimation, emergency control and so on. This article carried out the virtual environment modeling for verification of battery management system. According to the input/output parameters of battery management system, virtual environment is determined to run the battery management system. With the integration of the developed BMS model and the external model, the virtual environment model has been established for battery management system in the vehicle's working environment. Through the virtual environment model, the effectiveness of software algorithm of BMS was verified, such as battery state parameters estimation, power estimation, fault diagnosis, charge and discharge management, etc.

The Design, Implementation, Demonstration of the Architecture, Service Framework, and Applications for a Connected Car

  • Kook, Joongjin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.637-657
    • /
    • 2021
  • While the conventional vehicle's Head-Units played relatively simple roles (e.g., control of heating ventilation and air conditioning, the radio reception), they have been evolving into vehicle-driver interface with the advent of the concept of Connected Car on top of a rapid development of ICT technology. The Head-Unit is now successfully extended as an IVI (In Vehicle Infotainment) that can operate various functions on multimedia, navigation, information with regards to vehicle's parts (e.g. air pressure, oil gauge, etc.). In this paper, we propose a platform architecture for IVI devices required to achieve the goal as a connected car. Connected car platform (CoCaP) consists of vehicle selective gateway (VSG) for receiving and controlling data from major components of a vehicle, application framework including native and web APIs required to request VSG functionality from outside, and service framework for driver assistance. CoCaP is implemented using Tizen IVI and Android on hardware platforms manufactured for IVI such as Nexcom's VTC1010 and Freescale's i.MX6q/dl, respectively. For more practical verification, CoCaP platform was applied to an real-world finished vehicle. And it was confirmed the vehicle's main components could be controlled using various devices. In addition, by deriving several services for driver assistance and developing them based on CoCaP, this platform is expected to be available in various ways in connected car and ITS environments.

Idle Vibration Development Procedure of 4WD SUV (SUV차량의 Idle 성능 개발)

  • 최승우;이남영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.120-124
    • /
    • 2003
  • NVH issue at idle condition is one of the major concerns of Passenger and Commercial Vehicle including Sports Utility Vehicle Especially steering wheel vibration at idle condition is a very complex problem and affected by firing frequency of the engine, stiffness of a steering wheel system and the body to which the steering wheel system is attached. To avoid vibration mode coupling between each system of a vehicle, experimental and analytical method has been used at the pre-prototype stage. The resonance frequency of the body and the frame has been decoupled by CAE and the resonance frequency of steering wheel system has been set in between the 1st bending frequency of body and frame. These Results has been used as design guidelines tot the prototype drawing stage. The experimental verification of tile modified pre-prototype vehicle shows good results of the vibration mode decouple. Modal test of prototype vehicle also confirms the vibration mode decouple between each system.

  • PDF

Vehicle Mass and Road Grade Estimation for Longitudinal Acceleration Controller of an Automated Bus (자율주행 버스의 종방향 제어를 위한 질량 및 종 경사 추정기 개발)

  • Jo, Ara;Jeong, Yonghwan;Lim, Hyungho;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.2
    • /
    • pp.14-20
    • /
    • 2020
  • This paper presents a vehicle mass and road grade estimator for developing an automated bus. To consider the dynamic characteristics of a bus varying with the number of passengers, the longitudinal controller needs the estimation of the vehicle's mass and road grade in real-time and utilizes the information to adjust the control gains. Discrete Kalman filter is applied to estimate the time-varying road grade, and the recursive least squares algorithm is adopted to account for the constant mass estimation. After being implemented in MATLAB/Simulink, the estimators are evaluated with the dynamic model and experimental data of the target bus. The proposed estimators will be applied to complement the algorithm of the longitudinal controller and proceed with algorithm verification.