• 제목/요약/키워드: Vehicle suspension module

검색결과 19건 처리시간 0.023초

자동차 현가모듈의 내구설계를 위한 가상 내구시험기법 정립 및 응용 (Virtual Durability Test Procedures and Applications on Design of a Vehicle Suspension Module)

  • 손성효;허승진
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.144-150
    • /
    • 2003
  • Recently, the virtual test techniques using computer simulation play an important part in the vehicle development procedures in order to reduce the development time and cost by replacing the physical prototypes of the vehicle components or systems with the virtual prototypes. In this paper, virtual durability test procedures for the vehicle suspension module have been developed. Virtual durability test consists of dynamic simulation computing load history of suspension components, fatigue analysis computing the life of components. A vehicle suspension module for dynamic simulation are developed and validated by comparison with the measured data obtained from the field vehicle test. And on the basis of the validated vehicle suspension model, fatigue analysis has been performed for the virtual durability design of the suspension components.

자동차 서스펜션 설계를 위한 CAE기법의 개발(I) -부싱 모듈 개발- (Development of CAE Tools for Vehicle Suspension Design(I) -Development of a Bushing Module-)

  • 최용철;김광석;김외조;유완석
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.31-39
    • /
    • 1998
  • The role of bushing elements linked between suspension parts is to enhance ride quality and handling stability by the spring and damping effect from the elastic deformation. In this paper, a theoretical derivation and computer implementation off a bushing element are proposed. Three different vehicle models are generated to test the developed bushing module. The developed bushing module is implemented as a bushing module in the vehicle dynamic analysis program AUTODYN7.

  • PDF

승용차 알루미늄 멀티링크 현가장치 코너모듈의 실험적 정강도 특성 평가 (Experimental Static Strength Evaluation of a Passenger Car Aluminium Multi-link Suspension Corner Module)

  • 조원용;최규재
    • 한국자동차공학회논문집
    • /
    • 제21권4호
    • /
    • pp.166-173
    • /
    • 2013
  • An aluminum suspension corner module is widely used in high class passenger cars to reduce vehicle weight and improve fuel economy. According to the change of material and suspension type, the evaluation of the static strength and failure mode of the corner module is important. In this study, static strength and failure mode analysis of aluminium multi-link suspension corner module is presented. Static strength test system is designed and static failure mode tests of the corner module are carried out in longitudinal, lateral, and vertical direction. From the resuls of the tests we found that the failure modes are different compare to those of the steel corner module. The static failure modes and load-displacement curves of this study will be used as a guidance in design of a passenger car aluminium multi-link suspension corner module.

현가계의 교체가 가능한 모듈형 실험차량의 개발 (A Development of the Modular Experimental Vehicle with Variable Suspension Systems)

  • 배상우;강주석;윤중락;이재형;이장무;탁태오
    • 한국자동차공학회논문집
    • /
    • 제5권5호
    • /
    • pp.132-139
    • /
    • 1997
  • It is difficult for most of passenger cars to attach various types of suspensions. The modular experimental vehicle, which is designed to exchange suspension systems, has been developed to evaluate the effect of design changes of a suspension upon ride and handling characteristics of a vehicle. In order to enable the assemblage between modules, the experimental vehicle design is based on a space frame construction through finite element analysis. Moreover, module frames and brackets are designed using three-dimensional solid modeler to check the interference between each part of a vehicle. Steady-state and transient road tests were performed. Multibody dynamic model and simplified linear vehicle model are made to compare with the tests. The results of simulations and tests show the performance and validity of this experimental vehicle.

  • PDF

현가계의 교체가 가능한 모듈형 실험차량의 개발 (A Development of Modular Experimetal Vehicle for Exchanging Suspension Systems)

  • 배상우;강주석;윤중락;이장무;탁태오
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.847-851
    • /
    • 1996
  • In this study, in order to adapt various types of suspensions that is not possible for a passenger car, and to validate the effect of the design change of a suspension upon ride and handling characteristics of vehicle, the modular experimental vehicle, which makes possible to exchange suspension systems, has been designed and developed. In order to enable the assemblage between the modules, the experimental vehicle design is based on a space frame construction through finite element analysis. Moreover, the module frames and the brackets are designed are designed using three- dimensionalsolid modeler to check the interference between each part of a vehicle. The results of simulation and experiment are compared.

  • PDF

Road-friendliness of Fuzzy Hybrid Control Strategy Based on Hardware-in-the-Loop Simulations

  • Yan, Tian Yi;Li, Qiang;Ren, Kun Ru;Wang, Yu Lin;Zhang, Lu Zou
    • Journal of Biosystems Engineering
    • /
    • 제37권3호
    • /
    • pp.148-154
    • /
    • 2012
  • Purpose: In order to improve road-friendliness of heavy vehicles, a fuzzy hybrid control strategy consisting of a hybrid control strategy and a fuzzy logic control module is proposed. The performance of the proposed strategy should be effectively evaluated using a hardware-in-the-loop (HIL) simulation model of a semi-active suspension system based on the fuzzy hybrid control strategy prior to real vehicle implementations. Methods: A hardware-in-the-loop (HIL) simulation system was synthesized by utilizing a self-developed electronic control unit (ECU), a PCI-1711 multi-functional data acquisition board as well as the previously developed quarter-car simulation model. Road-friendliness of a semi-active suspension system controlled by the proposed control strategy was simulated via the HIL system using Dynamic Load Coefficient (DLC) and Dynamic Load Stress Factor (DLSF) criteria. Results: Compared to a passive suspension, a semi-active suspension system based on the fuzzy hybrid control strategy reduced the DLC and DLSF values. Conclusions: The proposed control strategy of semi-active suspension systems can be employed to improve road-friendliness of road vehicles.

전기 자동차용 경량화 서스펜션 모듈 개발 (Lightweight Suspension Module Development for Electric Vehicle)

  • 정윤식;신헌섭;임성수;최진환
    • 대한기계학회논문집A
    • /
    • 제37권8호
    • /
    • pp.1015-1019
    • /
    • 2013
  • 현재 전기자동차의 높은 에너지 효율 및 승차감을 모두 만족시키기 위해 경량 서스펜션 개발에 많은 초점이 맞추어 지고 있다. 개발되고 있는 경량 서스펜션중 rubber tube로 만들어진 에어서스펜션이 에너지효율 및 승차감을 만족시킨다고 평가 받고 있다. 본 논문에서는 높은 전장비의 특징을 가지는 전기자동차용 에어서스펜션을 개발하였다. 또한 실제 에어서스펜션의 성능 향상 연구를 위해 유연 다물체 동역학 모델(MFBD) 방법을 이용하여 모델링하였고, 에어서스펜션에서 중요한 역할을 하는 rubber tube의 경우는 FE기법을 통해 모델링 하였다. 에어서스펜션의 각 모듈 특성을 고려하여 모듈별 물성실험을 진행 및 물성치를 추정하였다. MFBD모델의 신뢰성 확인을 위해 물성치를 적용시킨 시뮬레이션 결과와 실제 실험결과를 비교하였다.

자기부상열차의 다이나믹 시뮬레이션 (Dynamic Simulation of Magnetically-Levitated Vehicle)

  • 김종문;배종일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.34-36
    • /
    • 2005
  • In this paper, dynamic simulation results for magnetically-levitated vehicles are presented. The dynamic equations and models for a half-bogie system are derived. They include primary suspension system, module, secondary suspension and cabin. Also, the dynamic characteristics for the derived models are analysed.

  • PDF

브레이크 저더 저감을 위한 전달계 최적 설계 (The Optimal Design of Suspension Module for Brake Judder Reduction)

  • 김정훈;유동호;강연준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1213-1218
    • /
    • 2007
  • The brake judder comes from non-uniformities in the tire/wheel assembly caused by mechanical effects such as a brake torque variation (BTV). A disc thickness variation (DTV) related with the kinematic behavior of the disc was investigated a main source of BTV. In this study, a dynamic model with brake corner assembly of full vehicle using MSC.ADAMS was correlated by experiment of judder phenomenon. Judder was generated and correlated systematically by judder experiment in chassis and brake dynamometer from variation in the thickness of the disc. Also it has been found a judder transfer path and variation of the braking pressure. Through analysis of transfer function and movement of subsystem caused by BTV generation, design parameters have been found. Based on the results obtained from parameter study of suspension module, the effective design process and developed model with brake corner assembly was suggested for vibration reduction of steering wheel caused by the judder phenomenon.

  • PDF

승용차 현가모듈 설계를 위한 새로운 부싱모델 개발 (Development of a New Bushing Model for Vehicle Suspension Module Design)

  • 옥진규;박동운;유완석;손정현
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.143-150
    • /
    • 2006
  • In this paper, a new bushing model for vehicle dynamics analysis using Bouc-Wen hysteretic model is proposed. Bushing components of a vehicle suspension system are tested to capture the nonlinear behavior of rubber bushing elements using the MTS 3-axes rubber test machine. The results of the tests are used to define parameters in Bouc-Wen bushing model, which was employed to represent the hysteretic characteristics of the bushing. Bushing parameters are obtained by using genetic algorithms and sensitivity analysis of parameters are also carried out. ADAMS program was used for the identification process and VisualDOC program was employed to find the optimal parameters. A half-car simulation was carried out to show the usefulness of the developed bushing model.