• Title/Summary/Keyword: Vehicle suspension

Search Result 705, Processing Time 0.028 seconds

An Effect of Warm Shot Peening on the Fatigue Behavior of Suspension Coil Springs (현가장치용 코일스프링의 피로특성에 미치는 온간쇼트피닝 가공의 영향)

  • Kim, Ki-Jeon;Chung, Suk-Choo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1209-1216
    • /
    • 2002
  • The requirements of coil spring fer higher fatigue strength have been increased to achieve the weight reduction of a vehicle. As the possible increase in fatigue strength by using the conventional shot peening treatment is found to be limited, it is necessary to modify the shot peening treatment. The warm shot peening is a shot peening treatment carried out within warm temperature range. The aim of this paper is to analyze some experimental results concerned with the effect of warm shot peening and to discuss the mechanism of warm shot peening in detail. By the results of rotating bending fatigue test, the fatigue strength of test specimen increases up to 23.8% in the production condition of warm shot peening at 200$\^{C}$ compared with conventional shot peening. The major reason why the warm shot peening is effective to the improvement of fatigue strength is the increase of a compressive residual stress distribution, which can be caused by more effective deformation under the condition of warm temperature.

EFFECT OF RESIDUAL STRESS BY SHOT PEENING ON FATIGUE STRENGTH OF LCV LEAF SPRING

  • BAE D. H.;SOHN I. S.;JUNG W. S.;KIM N. S.;JUNG W. W.;PARK S. C.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.671-676
    • /
    • 2005
  • Spring is one of major suspension part of the light commercial vehicle (LCV). In the manufacturing process it is shot-peened to improve its fatigue strength. In this paper, residual stresses by shot peening were calculated through finite element analysis, and the effects of these residual stresses on fatigue strength of leaf spring were evaluated. Fatigue tests were performed with two kinds of specimens; one is actual leaf spring assembly, and the other is simulated 3-point bending specimen. Fatigue tests were performed under the loading condition that was measured on the proving ground. From the results, the maximum load-fatigue life relation of leaf spring was defined, and test results of 3 point bending specimen are in good agreement with those of leaf spring assembly. The effects of residual stresses by shot peening on fatigue strength of leaf spring is not large in the high load range, however, in the low load range, its effects were not negligible.

Dynamic Analysis for Improvement of Running Stability of Rubber Tired AGT Localization Bogie (고무차륜 경량전철 국산화 대차의 주행안정성 향상을 위한 동특성 해석)

  • Eom, Beom-Gyu;Lee, Hi-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.307-317
    • /
    • 2012
  • The LRT(light rail transit) system, which has medium transport capacity between subway and bus is an advanced transportation system. It has many benefits like chap construction and operational cost down through driverless and flexible route planning. The rubber tired AGT(K-AGT) is a kind of LRT, which has rubber wheels and side guides. The side guides has many advantages, but brings vibration and noise problems from the friction between the guide rail and the wheels. This is the major source for the of passengers' discomfort. The purpose of this paper is to analyze dynamic characteries and running stability of the rubber tired AGT localization bogie if the AGT's speed is increased from 70 km/h to 80 km/h. The current design parameters of bogie suspension, as it is designed, was examined to satisfy the comfort index of the railway vehicle in performance test.

Consideration of Frequency Dependent Complex Stiffness of Rubber Busings in Transmission Force Analysis of a Vehicle Suspension System (고무 부싱의 주파수 의존 복소 강성을 고려한 차량 현가 장치에서의 전달력 분석)

  • 이준화;김광준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.34-39
    • /
    • 1998
  • In order to compute the forces which are transmitted through rubber bushings with a commercial multibody dynamic analysis (MBDA) program, a rubber bushing model is needed. The rubber bushing model of MBDA programs such as DADS or ADAMS is the Voigt model which is simply a parallel spring-viscous damper system, meaning that the damping force of the Voigt model is proportional to the frequency. However, experiments do not necessarily support this proportionality. Alternatively, the viscoelastic characteristics of rubber bushings can be better represented by the complex stiffness. The purpose of this paper is to develop a viscoelastic rubber bushing model for the MBDA programs. Firstly, a methodology is proposed to calculate the complex stiffness of rubber bushings considering static and dynamic load conditions. Secondly, a viscoelastic rubber bushing model developed which uses standard elements provided by DADS. The proposed methods are applied to the rubber bushings of the lower control arms of a rear suspension of a 1994 Ford Taurus model. Then, the forces computed for the rubber bushing model are analyzed and compared with the Voigt model in time and frequency domains.

  • PDF

An Experimental Study of Nonlinear Viscoelastic Bushing Model for Axial Mode

  • Lee, Seong-Beom;Shin, Jung-Woog;Alan S. Wineman
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1324-1331
    • /
    • 2003
  • A bushing is a device used in automotive suspension systems to cushion the force transmitted from the wheel to the frame of the vehicle. A bushing is essentially a hollow cylinder which is bonded to a solid metal shaft at its inner surface and a metal sleeve at its outer surface. The shaft is connected to the suspension and the sleeve is connected to the frame. The cylinder provides the cushion when it deforms due to relative motion between the shaft and sleeve. The relation between the force applied to the shaft or sleeve and its deformation is nonlinear and exhibits features of viscoelasticity. An explicit force-displacement relation has been introduced for multi-body dynamics simulations. The relation is expressed in terms of a force relaxation function and a method of determination by experiments on bushings has been developed. Solutions allow for comparison between the force-displacement behavior by experiments and that predicted by the proposed method. It is shown that the predictions by the proposed force-displacement relation are in very good agreement with the experimental results.

Study on Reduction Method and Characteristic of Lateral Vibration of the Tail Car in a High Speed Train (고속철도 차량의 후미 횡진동 특성 및 저감방안에 관한 연구)

  • Kim, Jae Chul;Kwon, Seok Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.765-771
    • /
    • 2014
  • During the acceptance test of KTX, unexpectedly great lateral vibration in 14th~16th train at 150km/h~200km/h was appeared on a straight line in the winter season. Generally, stiffness of secondary suspension in KTX vehicle is one of the most sensitive components on air temperature. So, we examined that the secondary suspension to be mounted heating system was able to reduce the lateral vibration in the tail car of KTX. Also, we verified that lateral vibration from test results on KTX train with wheel conicity 1/20 disappeared. In this paper, we analysis effective reduction methods and the cause of the lateral vibration using model of KTX train and compare with the test results. The analysis results agree well with test ones. From mode analysis result, lateral vibration is occurred at natural frequency range 0.5~0.6Hz with a negative damping value and its natural frequency disappear gradually according to increasing of wheel concinicy.

Development and Evaluation of a Hybrid Damper for Semi-active Suspension (반능동 현가장치의 하이브리드형 댐퍼 개발에 관한 연구)

  • Jin, Chul Ho;Yoon, Young Won;Lee, Jae Hak
    • Journal of Drive and Control
    • /
    • v.15 no.1
    • /
    • pp.38-49
    • /
    • 2018
  • This research describes the development model and testing of a hybrid damper which can be applicable to a vehicle suspension. The hybrid damper is devised to improve the performance of a conventional passive oil damper using a magneto-rheological (MR) accumulator which consists of a gas accumulator and a MR device. The level of damping is continuously variable by the means of control in the applied current in a MR device fitted to a floating piston which separates the gas and the oil chamber. A simple MR device is used to resist the movement of floating piston. At first a mathematical model which describes all flows within the conventional oil damper is formulated, and then a small MR device is also devised and adopted to a mathematical model to characterize the performance of the device.

Optimum Design of the Shock Absorber Position Using ADAMS and VisualDOC (ADAMS와 VisualDOC를 사용한 쇽업쇼버 위치의 최적설계)

  • Ok, Jin-Kyu;Baek, Woon-Kyung;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • In this paper, an optimum design technology is developed to find an optimal position of the shock absorber using ADAMS and VisualDOC. A vehicle with a torsion-beam rear suspension is modeled by using ADAMS. Design variables for the optimal positioning of the shock absorber are defined considering the hard points of the chassis structure and design positioning are specified through the sensitivity analysis using a bump-crossing simulation. The objective function is defined as the joint reaction forces of the shock absorber connecting joints of the chassis structure. Sequential Quadratic Programming and Genetic Algorithms are used for this study. To validate the optimized design variables, pothole simulations are performed. GA showed better results than SQP algorithms for this design purpose.

A Study of A Nonlinear Viscoelastic Model for Elastomeric Bushing in Automotive Suspension System (I) -Axial Mode- (차량현가장치용 일래스토메릭 부시으이 비선형점탄성 모델연구 (I) -축 방향 모드-)

  • 이성범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.154-161
    • /
    • 1999
  • An elastomeric bushing is a device used in automotive suspension systems to cushion the force transmitted from the wheel to the frame of the vehicle. A bushing is an elastomeric hollow cylinder which is bonded to a solid metal shaft at its inner surface and a metal sleeve at its outer suface. The relation between the force applied to the shaft or sleeve and their relative deformation is nolinear and exhibits features of viscoelasticity. Numerical solutions of the boundary value problem represent the exact bushing response for use in the method for determining the force relaxation function of the bushing. The new nonlinear viscoelastic bushing model, which is called Pipkin-Rogers model, is proposed and it is shown that the predictions of the proposed force-displacement relation are in very good agreement with the exact results. This new bushing model is thus very suitable for use in multi-body dynamics codes. The success of the present study for axial mode response suggests that the same approach be applied to other modes, such as torsional or radial modes.

  • PDF

Inverse Model Control of An ER Damper System

  • Cho Jeong-Mok;Jung Taeg-Eun;Kim Dong-Hyeon;Joh Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.64-69
    • /
    • 2006
  • Due to the inherent nonlinear nature of Electro-rheological (ER) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the nonlinear damping force model is made to identify the properties of the ER damper using higher order spectrum. The higher order spectral analysis is used to investigate the nonlinear frequency coupling phenomena with the damping force signal according to the sinusoidal excitation of the damper. Also, this paper presents an inverse model of the ER damper, i.e., the model can predict the required voltage so that the ER damper can produce the desired force for the requirement of vibration control of vehicle suspension systems. The inverse model is constructed by using a multi-layer perceptron neural network. A quarter-car suspension model is considered in this paper for analysis and simulation. Simulation results show that the proposed inverse model of ER damper can obtain control voltage of ER damper for required damping force.