• 제목/요약/키워드: Vehicle stability analysis

검색결과 410건 처리시간 0.025초

차량 후미부 형상 변경에 따른 공력 횡풍 안정성 개선에 관한 수치해석 연구 (The Numerical Assessment with Modified Vehicle Rear Body Shape on the Aerodynamic Crosswind Stability Improvement)

  • 최상열;김영태;장윤혁;하종백;김은석
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.51-53
    • /
    • 2008
  • The vehicle aerodynamic crosswind characteristics are mainly governed by the coefficient of side force and yawing moment. These performances affect not only the driving comfort which can be felt by driver but also the safety due to the instability of vehicle. The aims of this investigation are to improve the aerodynamic crosswind performance of sedan vehicle under the crosswind conditions. In order to improve the crosswind stability, numerical analysis has been performed by modifying the rear body shape of vehicle. As the results, we observed about 20% reduction of yawing moment coefficient relative to the base vehicle.

  • PDF

공압부양 고속 지상운송채의 비정상 공력해석 (Unsteady Aerodynamic Analysis of an Air-Pressure-Levitated High-Speed Ground Vehicle)

  • 조정현;조진수
    • 한국항공우주학회지
    • /
    • 제36권8호
    • /
    • pp.728-733
    • /
    • 2008
  • 경계요소법을 이용하여 비평면 지면 위를 움직이는 공압부양 고속 지상운송체의 비정상 공력해석을 수행하였다. 비정상 공력해석을 위하여 시간전진법과 이에 연계한 자유후류를 도입하였다. 공압부양 고속 지상운송체가 채널 내를 움직일 때, 채널에 갇힌 공기에 의해 지면효과가 증가하여 운송체의 양력계수와 피칭모멘트 계수가 더욱 증가한다. 즉, 채널과 같은 비평면 지면은 운송체의 종방향 불안정성을 증가시킨다. 반면, 채널과 같은 비평면 지면에 의한 양력상승이 운송체 탠덤날개의 왼쪽과 오른쪽에 동일하게 발생하기 때문에 채널과 같은 비평면 지면효과가 운송체의 횡방향 안정성에 미치는 영향은 크지 않다.

Sports Utility Vehicle-EPS의 자유제어 안정성 해석 (Free Control Stability Analysis of Sports Utility Vehicle-EPS)

  • 장봉춘;권대규
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.162-167
    • /
    • 2004
  • In this research the Co-simulation technique for an electric power steering system with MATLAB/SIMULINK and a full vehicle model with ADAMS has been developed. The dynamic responses of vehicle chassis and steering system are evaluated. Then, a full vehicle model interacted with EPS control is concurrently simulated with an impulsive steering wheel torque input to analyze the stability of 'free control' or hands free motion for Sports Utility Vehicle. This integrated method allows engineers to reduce the prototype testing cost and to shorten the developing period.

복합재료 경전철의 차체구조 해석 (A Structural Analysis on the Light Rail Vehicle Body with Composite Material)

  • 이영신;김재훈;이호철;길기남;박병준
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 추계학술대회 논문집
    • /
    • pp.437-446
    • /
    • 1999
  • The structural behavior of the composite material light rail vehicle body are investigated. Composite material is very useful for light rail vehicle structure due to its high specific strength and lightweight characteristics. The main carbody is made of aluminum alloy. The side wall and roof with composite panels can reduce total vehicle weight about 2000kg. In addition, with the lower density of the foam, enhances lightness in the panel and to save the operation expenses. The finite element analysis code, ANSYS is used to evaluate the stability of the body structure under the various load conditions.

  • PDF

안내궤도 차량의 조향 안정성 평가 (An Evaluation on the Steering Stability of the Guideway Vehicle)

  • 윤성호
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.209-215
    • /
    • 2002
  • A study of the guideway vehicle was made for a comparison of ride stabilities between its two primary steering types; one is the front wheel steering and the other the front-rear wheel. A numerical model as a closed loop system was built for an investigation of various factors to have an influence on the vehicular critical speed which is closely associated with ridabilities. It was shown that dynamics stabilities of the front steering type was much better over a large value of steering gain and the longer distance between front axle and guide link for both types provided better stabilities as well. A large steering gain ratio of the front to the rear significantly plays an important role in an improvement of stability in the front-rear steering. To observe a qualitative trend on stability behaviors, the root locus was obtained by considering a time lag which may be frequently caused by the complicated steering mechanism. In performing so, the appropriate selection of steering gain had a greater effect on the front-rear steering vehicle far more ride comfort. In addition, the dynamics model proposed here can be utilized for a more accurate evaluation on the vehicle design in lateral or yawing absorber and moreover expanded for the analysis of independent four-wheel steering vehicle.

소방 고가사다리차의 설계 변수에 따른 안정성 평가를 위한 구조해석 연구 (A Study on Structural Analysis for Stability Evaluation According to Design Parameters of a Fire Ladder Vehicle)

  • 정훈;김철중;김홍건
    • 한국기계가공학회지
    • /
    • 제19권8호
    • /
    • pp.64-72
    • /
    • 2020
  • In this study, a stability analysis was conducted through finite element analysis (FEA) of a simplified model of a fire ladder truck by changing the ascending angle, turning angle, and boundary conditions between the outrigger and the ground. The results of the analysis showed that decreasing the angle of the ladder car increases the moment due to the ladder weight, decreasing the safety factor despite being under the same load conditions. In the case of a rotating radius, the stability was found to vary depending on the boundary conditions. A comparative analysis in the future with these results and the experimental values from the actual fire ladder truck may determine the most appropriate boundary conditions based on the analysis program. It is expected to predict the risk of damage and rollover by assessing the stability of aerial ladder vehicles under different conditions.

자주포용 탄약 운반 궤도차량 도어힌지 용접부 구조강도 해석 (Structural Weld Strength Analysis on Door Hinge of Field Artillery Ammunition Support Vehicle)

  • 강현제;김병호;김병현;서재현
    • 한국기계가공학회지
    • /
    • 제15권3호
    • /
    • pp.58-65
    • /
    • 2016
  • This study analyzed the structural weld strength for a door hinge for a field artillery ammunition support vehicle. In order to determine the optimal conditions, we measured the modal analysis and analyzed the leg length of a rear door hinge. From these methods, we acquired the vibration frequency of normal mode and the optimal welding leg length conditions. It was possible to obtain a structural stability for a rear door hinge of the field artillery ammunition support vehicle. In the future, this should be used as a reference source for the weld strength analysis of high vibration and high weight structures for another welding system design.

차세대 고속철도의 안정성 및 안전성 해석 (Stability and Safety Analysis on the Next Generation High-Speed Railway Vehicle)

  • 조재익;박태원;윤지원;김지영;김영국
    • 한국철도학회논문집
    • /
    • 제13권3호
    • /
    • pp.245-250
    • /
    • 2010
  • 본 논문에서는 안정성과 안전성 해석을 통하여 차세대 고속철도(HEMU-400X)의 주행성능을 예측하였다. 차량의 설계단계에서 주행성능을 예측하는 것은 차량의 안전 확보를 위해 매우 중요하다. 안정성 해석을 통하여 차륜의 등가 답면구배에 따른 임계속도를 계산하였다. 임계속도는 UIC518에 근거하여 등가 답면구배 0.15에서 400km/h가 달성 가능함을 보였다. 또한 안전성 해석을 통하여, 동역학 모델의 횡방향과 수직방향의 가속도 값을 시뮬레이션 하였다. 안정성 해석은 UIC518에 근거하여 440km/h의 속도로 30km의 구간을 주행하였다. 그리고 계산된 값들은 모두 UIC518의 최대 허용 가속도 값보다 적게 나타나는 것을 확인하였다.

Boundary Condition for Bare Chassis Brackets of the Commercial Vehicle

  • Yang, Seung Bok
    • International journal of advanced smart convergence
    • /
    • 제11권1호
    • /
    • pp.94-100
    • /
    • 2022
  • It is common for commercial vehicles to make the top part according to the use after making the bear chassis, and to connect various devices with the bear chassis. Various brackets used in bear chassis for the development of all automobiles, including commercial vehicles, play a role of connecting the components required for driving and operating the car to the car body. In commercial vehicles, components necessary for operation are installed in the bear chassis; that is, the bear chassis of commercial vehicles is a space where the devices required for driving and operating the vehicle are installed. The devices required for the configuration of the vehicle are drive, brake, exhaust and steering, etc. These devices are basically connected to the body, the front axis, or the rear axis. The part interlinking the apparatuses required for the vehicle drive to the car body or axis is bracket. In this study, we analyzed the boundary conditions to evaluate the stability of the three brackets that connect the components of the car to the front axis of the new type of 30-seater bus in the development process. In order to analyze the boundary conditions, the boundary conditions according to the driving condition of the vehicle were classified. For stress analysis to evaluate the stability of brackets according to the driving state of the vehicle, it is reasonable to give the bracket a boundary condition of harsh conditions.

충돌회피를 위한 극한 운전시 자동차의 동적안정성 해석 (Dynamic Stability Analysis of A Vehicle in Limit Driving for Crash Avoidance)

  • 김성필;백운경
    • 동력기계공학회지
    • /
    • 제1권1호
    • /
    • pp.106-123
    • /
    • 1997
  • In this study, vehicle directional stability is investigated for limit driving for crash avoidance maneuver using a full vehicle dynamic model. The model was analytically validated using typical step steering and lane change simulation. Limit driving condition for the vehicle model was quoted from research results of references. It was demonstrated that instable vehicle motion was caused by not only road conditions but also driving conditions. Also, the simulation showed that braking combined with steering caused very hazardous situation in crash avoidance maneuver. Finally, phase plane plot approach was used to evaluate the dynamic instability.

  • PDF