• 제목/요약/키워드: Vehicle stability analysis

검색결과 410건 처리시간 0.023초

일반체결구/활동체결구 접속구간 차량 및 궤도 안정성 평가에 관한 연구 (A Study on Stability Assessment of Vehicle and Track on Transition between Conventional and Zero-Longitudinal Resistance Rail Fastener)

  • 양신추;장승엽;김은;유진영;홍성모
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1078-1083
    • /
    • 2008
  • In this paper, assessed are the stability of vehicle and track according to vertical support stiffness difference on the transition between conventional and zero-longitudinal resistance (ZLR) rail fastener on bridge. For this, the spring constants of rail fastener have been determined according to different load ranges - KTX load (with or without impact factor) and test load of EN standards - from results of laboratory test on rail pad, the stability analysis of vehicle and track has been performed according to numbers or installation length of ZLR fasteners using vertical vehicle-track coupled model to consider train-track interaction. The analysis results reveal that only the wheel load variation slightly exceed the limit value when 2 ZLR fasteners are used with spring constant determined within the EN test load range, but, in all other cases, all evaluation items are satisfied. Thus, it can be said that the stability of vehicle and track will not be degraded by ZLR fastener.

  • PDF

자율주행 경로 추종 성능 개선을 위한 차량 조향 시스템 특성 분석 (Vehicle Steering System Analysis for Enhanced Path Tracking of Autonomous Vehicles)

  • 김창희;이동필;이경수
    • 자동차안전학회지
    • /
    • 제12권2호
    • /
    • pp.27-32
    • /
    • 2020
  • This paper presents steering system requirements to ensure the stabilized lateral control of autonomous driving vehicles. The two main objectives of a lateral controller in autonomous vehicles are maintenance of vehicle stability and tracking of the desired path. Even if the desired steering angle is immediately determined by the upper level controller, the overall controller performance is greatly influenced by the specification of steering system actuators. Since one of the major inescapable traits that affects controller performance is the time delay of the steering actuator, our work is mainly focused on finding adequate parameters of high level control algorithm to compensate these response characteristics and guarantee vehicle stability. Actual vehicle steering angle response was obtained with Electric Power Steering (EPS) actuator test subject to various longitudinal velocity. Steering input and output response analysis was performed via MATLAB system identification toolbox. The use of system identification is advantageous since the transfer function of the system is conveniently obtained compared with methods that require actual mathematical modeling of the system. Simulation results of full vehicle model suggest that the obtained tuning parameter yields reduced oscillation and lateral error compared with other cases, thus enhancing path tracking performance.

안정성 영역(Stability Area) 판별법을 이용한 발사체 자세제어 이득 설계 및 자세 안정성 분석 (A Study of Attitude Control and Stability Analysis Using D-Decomposition Stability Area Technique for Launch Vehicle)

  • 박용규;선병찬;노웅래;오충석
    • 한국항공우주학회지
    • /
    • 제37권6호
    • /
    • pp.537-544
    • /
    • 2009
  • 본 논문에서는 안정성 영역 판별법(stability area) 기반 발사체의 자세제어기 이득결정과정에 대한 내용을 기술하였다. 안정성 영역 판별법은 D-Decomposition 기법으로부터 정의되는 것으로 본 논문에서는 D-Decomposition 기본 이론과 이로부터 산출된 발사체의 자세 안정성 영역을 도시하고, 적용 예로써 일반적인 발사체의 1단 추력 비행구간에서 자세제어기 설계과정을 제시하였다. 제어이득 결정을 위해서 중첩된 안정성 영역을 바탕으로 시스템 파라미터 불확실성을 고려 안정성 영역 경계(stability area boundary)를 설정하고, 선정된 제어이득을 발사체 선형모델에 적용, 자세 안정성 분석 수행 결과를 나타냈다.

회전운동을 고려하지 않고 유도된 유도지령이 발사체의 자세안정성에 미치는 영향분석 (Influence analysis of the guidance commands on attitude stability of a launch vehicle)

  • 최재원;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.469-473
    • /
    • 1992
  • The conventional closed-loop guidance commands are generated from a simplified point mass model for real time operations. In real situations, the generated guidance commands are applied to the original rigid body. This can cause attitude instability of the vehicle. In this paper, in order to solve the attitude instability problem in the guidance system sense, the influence of the guidance commands on a launch vehicle attitude is derived quantitatively. The checking method of the attitude stability conditions that uses Liapunov theorem is proposed, and the attitude stabilizing method is also proposed. The attitude stability is accomplished by subtracting the influence of the guidance commands that destabilize the vehicle attitude. The closed-loop guidance commands generated from the simplified point mass model may destabilize the vehicle attitude, which is verified through simulations. In this case, the vehicle attitude can be always stabilized with the proposed attitude stabilizing method without additive fuel consumption.

  • PDF

토우 궤적 변화에 의한 미니 버스 차량의 방향 안정성 연구 (A Study on the Effect of the Toe Geometry on the Directional Stability of Mini-bus Vehicle)

  • 이희범;안찬우
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.160-165
    • /
    • 1998
  • In this paper, We discuss the directional stability of a Mini-bus with varying suspension design parameters. We analyzed the vehicle behavior during the cornering in a transient steering condition. We made a vehicle model by use of DADS, which is dynamic analysis software, in order to carry out many cases of simulation with varying design parameters. The effect of toe-geometry change to vehicle stability is evaluated by computer simulation and the actual test. In order to reduce the under steer characteristics of a mini-bus, the amount of toe geometry change should be less than current value.

  • PDF

다용도 차량의 선형 모델을 이용한 직진 안전성 및 주파수 응답해석 (Stability and frequency response analysis of multipurpose vehicle using linear vehicle model)

  • 김병기;임원식
    • 한국정밀공학회지
    • /
    • 제14권9호
    • /
    • pp.124-129
    • /
    • 1997
  • The purpose of this study is to predict the stability and frequency response of multipurpose vehicle. The vehicle model has seven degrees of freedom. The motion equations are derived by using Lagrangian equation and linearized. The positions of eigenvalues of model which are dominated by lateral velocity, yaw rate, roll rate of sprung mass are used to predict the stability of motion. The resonse of sprung mass to steering wheel is simulated in time domain. It is predicted that the roll response of sprung mass would rather be improved by modifying the position of eigenvalues. The responses of sprung mass to steering wheel are also simulated in frequency domain. The magnitude and phase plots of gains are evaluated in driver's steering input frequency range.

  • PDF

제어시점에 따른 차량 안정성 제어 시스템의 제어 경향 (An Investigation of Con01 Threshold of Vehicle Stability Control System)

  • 정태영;이경수
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.195-201
    • /
    • 2005
  • In conventional Vehicle Stability Control (VSC) System, a control threshold is designed by average driver characteristics. Despite the stabilizing effort, VSC causes redundancy to an expert driver. An advanced VSC which has flexibility on its control property is proposed in this study. By using lateral velocity estimator, a control threshold is determined on side slip angle and angular velocity phase plane. Vehicle planar motion model based sliding controller is modified with respect to various control thresholds. The performance of the proposed VSC algorithm has been investigated by human-in-the-loop simulation using a vehicle simulator. The simulation results show that the control threshold has to be determined with respect to the driver steering characteristics. A VSC with variable control thresholds would provide an improvement compared to a VSC with a constant threshold.

소형탈선시뮬레이터 상에서의 1/5 축소대차의 안정성 해석 (A Running Stability Test of 1/5 Scaled Bogie using Small Scale Derailment Simulator)

  • 엄범규;이세용;이영엽;강부병;이희성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1905-1913
    • /
    • 2011
  • The dynamic characteristic of bogie that is driving system of railway vehicle is very important regarding decision of vehicle characteristics as running safety and comport. The dynamic characteristic test of bogie is tested on full size in place on field testing on track. But, the testing on the full size caused many problems. To overcome these problem by full size test, the Railway Safety Research Center in Seoul National University of Science & Technology developed 1/5 scale size of small scale derailment simulator and is currently testing running stability of 1/5 scaled bogie. Also To take effectively advantage of running stability test using small scale derailment simulator in actuality design and reliability estimation, it is necessary comparison and examination with field test and theoretical analysis result In this paper. to achieve running stability analysis of 1/5 scaled bogie on small scale derailment. the program using MATLAB that is fast compose and analysis the motion equation of Saemaul power bogie is developed. It is achieved analysis according to various specification (weight, size, suspension, etc..) and is evaluated corelation between test result and dynamic characteristic of actual railway vehicle.

  • PDF

Bicycle 모델을 이용한 4륜 조향 차량의 동력학 해석 (Linearized Dynamic Analysis of a Four-Wheel Steering Vehicle)

  • 이영화;김석일;서명원;손희성;김성하
    • 한국자동차공학회논문집
    • /
    • 제2권5호
    • /
    • pp.101-109
    • /
    • 1994
  • Recently, four-wheel steering systems have been developed and studied as one of the latest automotive technologies for improving the handling characteristics of a vehicle. In much of the proposed four-wheel steering systems, the side slip angle at the vehicle's center of gravity is maintained at zero. This approach allows the greater maneuverability at low speed by means of counter-phase rear steering and the improved stability at high speed through same-phase rear steering. In this paper, the effects of several four-wheel steering systems are studied and discussed on the responsiveness and stability of the vehicle by using the linear analysis. Especially, the effects of the cornering stiffnesses of both front and rear wheels are investigated on the yaw velocity gain and critical speed of the vehicle.

  • PDF

Working Principle of a Novel Three-directional Dumping Vehicle and Its Dumping Stability Analysis Under Ground-slope Conditions

  • Kong, Min-kyu;Park, Tusan;Shim, Sung-Bo;Jang, Ik Joo
    • Journal of Biosystems Engineering
    • /
    • 제42권4호
    • /
    • pp.235-241
    • /
    • 2017
  • Purpose: It is to develop an agricultural three-directional dumping vehicle that can help farmers reduce intensive labor when carrying heavy loads and for easy dumping. In addition, a novel mechanism was applied for controlling the direction of the tilting cargo box by using a single hydraulic cylinder and simple apparatus. The overturning safety was analyzed to provide safe-use ground slope region of the vehicle to be used at upland fields and orchards. Methods: The developed three-directional dumping vehicle was constructed using a cargo box, vehicle frame, driving components, lifting components, and controller. The novel mechanism of controlling the dumping direction involves the operation of two latching bars, which selectively release or collapse the connecting edge between the vehicle frame and cargo box. A multibody dynamics analysis software (RecurDynV8R5) was used to determine the safe-use ground slope area when tilting the cargo box at slopes. A computer analysis was conducted by increasing the ground slope while rotating the vehicle when the cargo box comprised loads of 300 and 500 kg and stacking heights of 40 and 80 cm, respectively. Results: The three-directional dumping vehicle was successfully manufactured, and the cargo box was tilted at $37^{\circ}$ and $35^{\circ}$ for dumping forward and sideways. The latching bars were manually and selectively collapsed with the vehicle frame to control the dumping direction. When forward dumping, the safe-use ground slope was over $20^{\circ}$ in all vehicle directions and loaded conditions. Conclusions: A three-directional dumping vehicle was developed to reduce labor-intensive work in the farming environment. The user can easily control the dumping direction by using the control panel. The vehicle was safe to be used in most of the Korean upland fields and orchards (area over 96%) for the forward dumping.