• Title/Summary/Keyword: Vehicle safety accident

Search Result 464, Processing Time 0.026 seconds

Analysis on the Driving Safety and Investment Effect using Severity Model of Fatal Traffic Accidents (대형교통사고 심각도 모형에 의한 주행안전성 및 투자효과 분석)

  • Lim, Chang-Sik;Choi, Yang-Won
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.3
    • /
    • pp.103-114
    • /
    • 2011
  • In this study, we discuss a fatal accident severity model obtained from the analysis of 112 crash sites collected since 2000, and the resulting relationship between fatal accidents and roadway geometry design. From the 720 times computer simulations for improving driving safety, we then reached the following conclusions:. First, the result of cross and frequency-analyses on the car accident sites showed that 43.7% of the accidents occurred on the curved roads, 60.7% on the vertical curve section, 57.2% on the roadways with radius of curvature of 0 to 24m, 83.9% on the roads with superelevation of 0.1 to 2.0% and 49.1% on the one-way 2-lane roads; vehicle types involved are passenger vehicles (33.0%), trucks (20.5%) and buses (14.3%) in order of frequency. The results also show that the superelevation is the most influencing factor for the fatal accidents. Second, employing the Ordered Probit Model (OPM), we developed a severity model for fatal accidents being a function of on various road conditions so as to the damages can be predicted. The proposed model possibly assists the practitioners to predict dangerous roadway segments, and to take appropriate measures in advance. Third, computer simulation runs show that providing adequate superelevation on the segment where a fatal accident occurred could reduce similar fatal accidents by at least 85%. This result indicates that the regulations specified in the Rule for Road Structure and Facility Standard (description and guidelines) should be enhanced to include more specific requirement for providing the superelevation.

Impact Condition of Safety Performance Evaluation for Longitudinal Barriers of SMART Highway (스마트하이웨이 종방향 방호울타리안전성능 평가를 위한 충돌조건)

  • Kim, Dong-Seong;Kim, Kee-Dong;Ko, Man-Gi;Kim, Kwang-Ju
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.49-57
    • /
    • 2009
  • To minimze the degree of damage for the SMART highway's punctuality and safety after car-barrier collisions, the impact condition for longitudinal barriers of SMART highway was determined to be quite larger than the existing maximum impact condition. The impact condition consists of impact vehicles, impact velocities, and impact angles. To consider the occupant safety of passenger cars as much as possible, a small car with high risk during impact was selected as the impact vehicle for the evaluation of occupant risk. The impact velocity was determined to be 20% larger than the existing maximum impact velocity in order to include accident impact velocities as much as possible. The impact angle was determined to include most of expected accident impact angles. Computer simulations using various impact conditions were conducted for the existing domestic highest-performance medium and roadside barrier. How the suggested impact condition has an effect on the occupant safety was investigated. The existing domestic highest-performance medium and roadside barriers could not satisfy the suggested impact condition. New high-performance longitudinal barriers are required to minimize the degree of damage for the SMART highway's punctuality and safety after car-barrier collisions.

A Study on Appropriate Breadth for U-turn Setup (U-turn 설치를 위한 적정 폭원에 관한 연구)

  • Lee, Jin-Uk;Kim, Gi-Hyeok
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.3
    • /
    • pp.39-47
    • /
    • 2009
  • Currently, the minimum breadth as a point available for U-turn setup is designated as "over 9m for one way" in the traffic safety facilities practical manuals, and vehicles allowed to make a U-turn are limited to passenger cars. However, as passenger cars have recently become larger and SUVs (Sports Utility Vehicles) are being popularized, they fail to make a U-turn in one attempt. This causes a traffic jam and a problem with traffic safety. This study proposed, compared, and tested the measured values of actual differences in the turning radius of U-turn by actual cars with estimated values by using PC-Crash, a car accident simulation program. Then, the study forecasted the turning radius of U-turns of Korean passenger cars by using PC-Crash, and proposed appropriate breadth for U-turn setup.

Effects of Wireless Controlled In-Pavement Flashing Light System at Pedestrian Crosswalk (횡단보도에서 무선제어가 가능한 도로표지병 도입효과)

  • Jin, Heui Chae;Lee, Jong Ho;Choi, Seok Geun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.3
    • /
    • pp.109-115
    • /
    • 2012
  • Pedestrian safety is becoming a major priority on the nation's roadway policy. Numerous strategies have been experimented with nationwide in an attempt to reduce the accidents of pedestrian-vehicle crashes, especially in pedestrian crosswalk. We suggest the wireless controlled in-pavement flashing light system to reduce the accident at pedestrian crosswalk. We have recommended the use of wireless controlled systems as a tool to manage the In-pavement flashing light system that have retain high visibility goals for pedestrian preserving or enhancing pedestrian safety. Then we have compared this system with any other legacy systems in respect of cost and effects.

A Development of an Evaluation System for Traffic Calming Schemes (교통정온화사업 평가체계 개발에 관한 연구)

  • Park, Wan-Yong;Won, Jai-Mu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4D
    • /
    • pp.335-343
    • /
    • 2012
  • In the study, evaluation indicators that should be considered in applying traffic calming schemes were developed, and it was intended to analyze the importance of indicators that should most considered in evaluation traffic calming scheme through AHP analysis on the basis of it. The result of the study is summarized as follows. The result of evaluation indicators may be summarized by dividing into residential area and commercial area. In category, the safety is shown to be more important than other indicators in the analysis when evaluation (residential area is 0.514 and commercial area is 0.439). Importance of evaluation indicators was analyzed in order Average Vehicle Speed, Traffic Accident Severity, and Pedestrian Separation. Residential areas to help keep the safety of pedestrians 'Average Vehicle Speed' as the major indices were derived. In commercial areas were analyzed as an important indicator Pedestrian Separation. Because there are so many pedestrians. When applying the effect of Traffic Calming, residential is greater than the commercial area.

Assessing the Safety Benefit of an Advanced Vehicular Technology for Protecting Pedestrian(Focused on Active Hood Lift System (AHLS)) (첨단안전차량 효과분석(보행자보호를 위한 Active Hood Lift System (AHLS)을 중심으로))

  • O, Cheol;Gang, Yeon-Su;Kim, Beom-Il;Kim, Won-Gyu
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.3 s.89
    • /
    • pp.95-102
    • /
    • 2006
  • This study develops a methodology on how to assess the traffic safety benefit of advanced vehicular technology for Protecting pedestrian in pedestrian-vehicle collision. Safety benefit is defined here as the reduction of Pedestrian fatality by employing advanced vehicular technology. As an application of the proposed methodology the safety benefit of active hood lift system (AHLS) is assessed. Both actual accident data analysis and simulation experiment are conducted to establish statistical models that are used for estimating the reduction of pedestrian fatality It is believed that the developed methodology and outcomes would be greatly useful in developing various advanced vehicular technologies and establishing more effective traffic safety policies.

Speeding Detection and Time by Time Visualization based on Vehicle Trajectory Data

  • Onuean, Athita;Jung, Hanmin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.593-596
    • /
    • 2018
  • The speed of vehicles has remained a significant factor that influences the severity of accidents and traffic accident rate in many parts of the world including South Korea. This behavior where drivers drive at speeds which exceed a posted safe threshold is known as 'speeding'. Over the past twenty years, the Korean National Police Agency (NPA) has become aware of an increased frequency of drivers who are speeding. Therefore, fixed-type ASE systems [1] have been installed on hazardous road sections of many highways. These system monitor vehicle speeds using a camera. However, the use of ASE systems has changed the behavior of the drivers. Specifically, drivers reduce speed or avoid the route where the cameras are mounted. It is not practical to install cameras at every possible location. Therefore, it is challenging to thoroughly explore the location where speeding occurs. In view of these problems, the author of this paper designed and implemented a prototype visualization system in which point and color are used to show vehicle location and associated over-speed information. All of this information was used to create a comprehensive visualization application to show information about vehicle driving. In this paper, we present an approach detecting vehicles moving at speeds which exceed a threshold and visualizing the points those violations occur on a map. This was done using vehicle trajectory data collected in Daegu city. We propose steps for exploring the data collected from those sensors. The resulting mapping has two layers. The first layer contains the dynamic vehicle trajectory data. The second underlying layer contains the static road networks. This allows comparing the speed of vehicles on roads with the known maximum safe speed of those roads, and presents the results with a visualization tool. We also compared data about people who drive over threshold safe speeds on each road on days and weekends based on vehicle trajectories. Finally, our study suggests improved times and locations where law enforcement should use monitoring with speed cameras, and where they should be stricter with traffic law enforcement. We learned that people will drive over the speed limit at midnight more than 1.9 times as often when compared with rush hour traffic at 8 o'clock in the morning, and 4.5 times as often when compared with traffic at 7 o'clock in the evening. Our study can benefit the government by helping them select better locations for installation of speed cameras. This would ultimately reduce police labor in traffic speed enforcement, and also has the potential to improve traffic safety in Daegu city.

  • PDF

Analysis of the Characteristics of Road and Transportation Safety Facilities Affecting Pedestrian Traffic Accidents around School Zones: Using Spatial Poisson Model (어린이보호구역 내 도로 및 교통안전시설이 보행자 교통사고에 미치는 영향 분석: 공간포아송모형을 이용하여)

  • Ko, Dong-Won;Park, Seung-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.11
    • /
    • pp.213-223
    • /
    • 2021
  • It is very important to build a safe walking environment for children because children are more likely to be exposed to traffic accidents than adults due to their behavioral and physical characteristics. Therefore, this study analyzed the characteristics of road and transportation safety facilities that affect pedestrian traffic accidents around school zones using spatial poisson regression. The pedestrian-vehicle crash data in Seoul 2016-2018 was provided by the Traffic Accident Analysis System(TAAS). The main analysis results are as follow; First, the more intersections and the higher percentage of neighborhood roads in the school zone, the higher the risk of pedestrian traffic accidents. Second, the pedestrian push button was found to reduce the occurrence of pedestrian traffic accidents. Third, except for the pedestrian push button, none of the transportation safety facilities considered in this study were effective in reducing the risk of pedestrian traffic accidents. On the other hand, if not only the improvement of physical facilities but also non-physical factors such traffic safety education are supported, the effect for reducing traffic pedestrian traffic accidents in the school zone is expected to be further maximized.

A Comparative Analysis of the Rental-car and non-Commercial Passenger Car Accident Characteristics in Jeju Island (제주지역 렌터카 및 비사업용 승용차 사고특성 비교분석)

  • KWON, Yeongmin;JANG, Kitae;SON, Sanghoon
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.2
    • /
    • pp.105-115
    • /
    • 2017
  • Each year, a number of tourists visit Jeju Island, a popular tourist destination in the Republic of Korea. A large portion of the tourists (about 61%) use a rental car as a means of transportation. With this reason, the number of rental cars registered in Jeju was 15,517 in 2011, while the total number of the rental car has rapidly increased to 26,338 in 2015. For the same period, the number of rental car involved traffic accidents has been doubled. Thus, this study aims to analyze the rental car accidents' characteristics, clarifying primary factors related to rental car accidents in Jeju Island. To do this, 918 rental car accidents and 4,201 non-commercial passenger car accidents that occurred in Jeju island over the two years (2014-2015) were compared, using statistical methods such as chi-square test and z-test. The results show that the characteristics of rental car involved accidents are different from those caused by the passenger cars. Most of the rental car accidents in Jeju were caused by young drivers and drivers who had just obtained their driver's licenses. This study finds that driver immaturity, unfamiliar geography, and driving an unfamiliar vehicle are the main causes of the rental car accidents. Statistical analysis confirms that the characteristics of these accidents appeared significantly different from the passenger cars in terms of human and environmental factors. On the other hand, there is no clear evidence that vehicle-related characteristics are different between rental car and non-commercial passenger car accidents. The implications on transportation safety analysis and effective solutions to prevent rental car traffic accidents are discussed.

Drivers' Workloads through the Driving Vehicle Test at Intersections (교차로 실차주행 실험을 통한 운전자 부하요인에 관한 연구)

  • Seo, Im-Ki;Park, Je-Jin;Sung, Soo-Lyeon;NamGung, Moon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.3
    • /
    • pp.112-123
    • /
    • 2012
  • Different from general roads, intersections are the points where roads having different geometric structure and traffic operation system are met, and thereby they have complicated road structure and environmental factors. Various changes in driving patterns such as collision between vehicles approaching from roads adjacent to intersections, sudden stop of vehicles upon stop sign, quick start upon green lights kept increasing traffic accidents. It is known that traffic accidents are mainly derived from human factors. This study, in order to find out factors affecting drivers' behaviors within intersections, measured physiological responses such as brain wave, sight, driving speed, and so on by using state-of-the-art measuring device. As to concentration brain wave at individual intersections, it was found out that brain wave of testes was higher at main Arterial and accident-prone intersections compared with that of subsidiary Arterial. In addition, it was detected that drivers' visual activity was widely distributed at accident-prone intersections, meaning that it enhanced cautious driving from nearby vehicles. As to major factors causing drivers' workloads, factors from nearby vehicles such as deceleration, acceleration, lane change of nearby vehicles appeared as direct factors causing drivers' workloads, clarifying that these factors were closely related to causes of traffic accidents at intersections. Results of this study are expected to be used as basic data for evaluation of safety at intersections in consideration of physiological response of drivers.