• Title/Summary/Keyword: Vehicle nonstationary vibration

Search Result 4, Processing Time 0.018 seconds

WAVELET ANALYSIS OF VEHICLE NONSTATIONARY VIBRATION UNDER CORRELATED FOUR-WHEEL RANDOM EXCITATION

  • Wang, Y.S.;Lee, C.M.;Zhang, L.J.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.257-268
    • /
    • 2004
  • The wavelet analysis method is introduced in this paper to study the nonstationary vibration of vehicles. A new road model, a so-called time domain correlated four-wheel road roughness, which considers the coherence relationships between the four wheels of a vehicle, has been newly developed. Based on a vehicle model with eight degrees of freedom, the analysis of nonstationary random vibration responses was carried out in a time domain on a computer. Verification of the simulation results show that the proposed road model is more accurate than previous ones and that the simulated responses are credible enough when compared with some references. Furthermore, by taking wavelet analysis on simulated signals, some substantial rules of vehicle nonstationary vibration, such as the relationship between each vibration level, and how the vibration energy flows on a time-frequency map, beyond those from conventional spectral analysis, were revealed, and these will be of much benefit to vehicle design.

Maximum Entropy Spectral Analysis for Nonstationary Random Response of Vehicle (최대 엔트로피 스펙트럼 방법을 이용한 차량의 과도 응답 특성 해석)

  • Zhang, Li Jun;Lee, Chang-Myung;Wang, Yan Song
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.8
    • /
    • pp.589-597
    • /
    • 2002
  • In this paper the nonstationary response of accelerating vehicle is firstly obtained by using nonstationary road roughness model in time domain. To get the result of nonstationary response in frequency domain, the maximum entropy method is used for Processing nonstationary response of vehicle in frequency domain. The three-dimensional transient maximum entropy spectrum (MES) of response is given.

A STUDY ON NONSTATIONARY RANDOM VIBRATION OF A VEHICLE IN TIME AND FREQUENCY DOMAINS

  • Zhang, L.J.;Lee, C.M.;Wang, Y.S.
    • International Journal of Automotive Technology
    • /
    • v.3 no.3
    • /
    • pp.101-109
    • /
    • 2002
  • A time domain method for solving nonstationary random vibration caused by vehicle acceleration is first proposed in which a time changing model is established for representing nonstationary excitation of a rough road. Furthermore a novel frequency domain method called the transient power spectral density with spatial frequency (TPSD) is presented to obtain a response of vehicle system in frequency domain. This method has been proved to be valid by comparing numerical results with the exact solution.

Modeling and Simulation of Road Noise by Using an Autoregressive Model (자기회귀 모형을 이용한 로드노이즈 모델링과 시뮬레이션)

  • Kook, Hyung-Seok;Ih, Kang-Duck;Kim, Hyoung-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.888-894
    • /
    • 2015
  • A new method for the simulation of the vehicle's interior road noise is proposed in the present study. The road noise model can synthesize road noise of a vehicle for varying driving speed within a range. In the proposed method, interior road noise is considered as a stochastic time-series, and is modeled by a nonstationary parametric model via two steps. First, each interior road noise signal, obtained from constant speed driving tests performed within a range of speed, is modeled as an autoregressive model whose parameters are estimated by using a standard method. Finally, the parameters obtained for different driving speeds are interpolated based on the varying driving speed to yield a time-varying autoregressive model. To model a full band road noise, audible frequency range is divided into an octave band using a wavelet filter bank, and the road noise in each octave band is modeled.