• Title/Summary/Keyword: Vehicle inspection

Search Result 299, Processing Time 0.026 seconds

Automatic Detection of Malfunctioning Photovoltaic Modules Using Unmanned Aerial Vehicle Thermal Infrared Images

  • Kim, Dusik;Youn, Junhee;Kim, Changyoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.619-627
    • /
    • 2016
  • Cells of a PV (photovoltaic) module can suffer defects due to various causes resulting in a loss of power output. As a malfunctioning cell has a higher temperature than adjacent normal cells, it can be easily detected with a thermal infrared sensor. A conventional method of PV cell inspection is to use a hand-held infrared sensor for visual inspection. The main disadvantages of this method, when applied to a large-scale PV power plant, are that it is time-consuming and costly. This paper presents an algorithm for automatically detecting defective PV panels using images captured with a thermal imaging camera from an UAV (unmanned aerial vehicle). The proposed algorithm uses statistical analysis of thermal intensity (surface temperature) characteristics of each PV module to verify the mean intensity and standard deviation of each panel as parameters for fault diagnosis. One of the characteristics of thermal infrared imaging is that the larger the distance between sensor and target, the lower the measured temperature of the object. Consequently, a global detection rule using the mean intensity of all panels in the fault detection algorithm is not applicable. Therefore, a local detection rule was applied to automatically detect defective panels using the mean intensity and standard deviation range of each panel by array. The performance of the proposed algorithm was tested on three sample images; this verified a detection accuracy of defective panels of 97% or higher. In addition, as the proposed algorithm can adjust the range of threshold values for judging malfunction at the array level, the local detection rule is considered better suited for highly sensitive fault detection compared to a global detection rule. In this study, we used a panel area extraction method that we previously developed; fault detection accuracy would be improved if panel area extraction from images was more precise. Furthermore, the proposed algorithm contributes to the development of a maintenance and repair system for large-scale PV power plants, in combination with a geo-referencing algorithm for accurate determination of panel locations using sensor-based orientation parameters and photogrammetry from ground control points.

A Dynamic Analysis of PSC Box Bridge Varying Span Lengths for Increased Speeds of KTX (고속철 속도변화에 대한 PSC박스 교량의 경간길이 별 동적해석)

  • Oh, Soon Taek;Lee, Dong Jun;Shim, Young Woo;Yun, Jun Kwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.204-211
    • /
    • 2011
  • A dynamic analysis procedure is developed to provide a better estimation of the dynamic responses of bridge during the passage of high speed railway vehicles. Particularly, a three dimensional numerical model including the structural interaction between high speed vehicles, bridges and railway endures to analyse accurately and evaluate with in-depth parametric studies for dynamic responses of various bridge span lengths running KTX railway locomotive up to increasing maximum speed(450km/h). Three dimensional frame element is used to model the simply supported pre-stressed concrete (PSC) box bridges for four span lengths(40~25m). Track irregularity employed as a stationary random process from the given spectral density functions and irregularities of both sides of the track are assumed to have high correlation. The high-speed railway vehicle (KTX) is used as 38-degree of freedom system. Three displacements (Vertical, lateral, and longitudinal) as well as three rotational components (Pitching, rolling, and yawing) are considered in the 38-degree of freedom model. The dynamic amplification factors are evaluated by the developed procedure under various traveling conditions, such as track irregularity camber, train speed and ballast. The dynamic analysis such as Newmark-${\beta}$ and Runge-Kutta methods which are able to analyse considering the dynamic impact factors are compared and contrasted.

Investigation of Impact Factor Variation of Open-Spandrel Arch Bridges According to Spacing Ratio of Vertical Members (수직재 간격비에 따른 개복식 상로 아치교의 충격계수 변화 분석)

  • Hong, Sanghyun;Oh, Jongwon;Roh, Hwasung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.45-52
    • /
    • 2020
  • An open-spandrel arch bridges, which consists of slab deck, arch rib, and vertical members, shows a various level of moment and axial forces according to the supporting boundary condition of arch rib and vehicle speeds. Also, the definition of impact factor accepts any kind of response parameters, not only displacement response at slab deck. The present study considers concrete open-spandrel arch bridges constrained with fixed conditions at the ends of arch rib and investigates the impact factor variation due to moving load speeds, response parameters, measuring locations, and vertical member spacing ratio of the bridges. The results of Reference model show that the impact factor is biggest when the reactive moment resulted at the vehicle-inducing opposite end of the arch rib is applied. The peak impact factor is a similar level obtained for the middle of the span adjacent to the slab deck center, but it is 19% higher than the peak impact factor calculated using the axial force developed at the same location. Reducing the spacing ratio of the vertical members as half as the reference model whose ratio is 1/9.375 produces a similar level of the moment-based peak impact factor compared to the reference model. However, when the spacing ratio is doubled, the peak impact factor is 4.4 times greater than the reference model.

Comparative Analysis of Noise Characteristics by Road Pavement Types as Measurement Methods (측정 방법에 따른 도로 포장 종류별 소음 특성 비교 연구)

  • Guk-Gon Song;Seok-Kyeong Bae;Woo-Young Cho;Hyun-Woo Cho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.5
    • /
    • pp.47-53
    • /
    • 2024
  • This study investigates the noise reduction effects of various road pavement methods to mitigate traffic noise caused by the increasing proximity between roads and residential areas in urban environments. The noise characteristics of four types of road pavement-Dense Asphalt Concrete (DAC), Double Layer Porous Asphalt Concrete (DLPAC), Transverse Tining Concrete (TTC), and Exposed Aggregate Concrete (EAC)-were evaluated using CPX close-proximity noise and pass-by noise measurements. The CPX measurements showed that noise levels increased logarithmically with vehicle speed for all pavements. Specifically, DLPAC demonstrated higher noise levels in the low-frequency range below 800 Hz and lower noise levels in the high-frequency range, which is attributed to resonance effects within the internal pores of the pavement and the reduction of compression and expansion noise. In pass-by noise measurements, DLPAC exhibited higher low-frequency noise compared to DAC, likely due to pavement durability deterioration and the influence of external environmental noise. The results indicate that the CPX measurement method is more effective in evaluating road noise performance as it better reflects the impact of vehicle speed. However, since the study was conducted under limited site conditions, further research across various sites and conditions is necessary to enhance reliability.

Integrity Evaluation of Railway Bogie Using Infrared Thermography Technique (적외선 열화상 기술을 이용한 철도차량 대차 건전성 평가)

  • Kim, Jeong-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.2
    • /
    • pp.144-149
    • /
    • 2011
  • The lock-in thermography was employed to evaluate the integrity of railway bogies. Prior to the actual application on railway bogies, in order to assess the detectability of known flaws, the calibration reference panel was prepared with various dimensions of artificial flaws. The panel was composed of structural steel, which was the same material with actual bogies. Through lock-in thermography evaluation, the optimal frequency of heat source was determined for the best flaw detection. Based on the defects information, the actual defect assessments on railway bogie were conducted with different types of railway bogies, which were used for the current operation. In summary, the defect assessment results with thermography method showed a good agreement as compared with the conventional inspection techniques. Moreover, it was found that the novel infrared thermography technique could be an effective way for the inspection and the detection of surface defects on bogies since the infrared thermography method provided rapid and non-contact mode for the investigation of railway bogies.

Measurement of Internal Defects of Pressure Vessels using Unwrapping images in Digital Shearography (Digital Shearography 에서 Unwrapping 이미지와 FEM 을 이용한 압력용기의 내부결함 측정)

  • Kim, Seong-Jong;Kang, Young-June;Sung, Yeon-Hak;Ahn, Yong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.48-55
    • /
    • 2012
  • Pressure vessels in vehicle industries, power plants, and chemical industries are often affected by flaw and defect generated inside the pressure vessels due to production processes or being used. It is very important to detect such internal defects of pressure vessel because they sometimes bring out serious problems. In this paper, an optical defect detection method using digital shearography is used. This method has advantages that the inspection can be performed at a real time measurement and is less sensitive to environmental noise. Shearography is a laser-based technique for full-field, non-contacting measurement of surface deformation (displacement or strain). The ultimate goal of this paper is to detect flaws in pressure vessels and to measure the lengths of the flaws by using unwrapping, phase images which are only obtained by Phase map. Through this method, we could decrease post-processing (next processing). Real length of a pixel can be calculated by comparing minimum and maximum unwrapping images with shearing angle. Through measuring several specimen defects which have different lengths and depths of defect, it can be possible to interpret quantitatively by calculating gray level.

A Study on Condition Assessment of the General National Road Bridge Deck (일반국도상 교량 바닥판의 상태 현황분석 연구)

  • Oh, Kwang Chin;Lee, Jun Gu;Shin, Ju Yeoul;Chang, Buhm Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.93-101
    • /
    • 2012
  • Bridge deck has a role in a comfortable and safe passage of vehicles. At the same time, it preserves upper structure against the abrasion and shearing due to impact of traffic loads in bridges or has a role to protect the plate from off adverse effect of climatic process as rain, chemicals. Currently, the total number of inspected bridges is 6,248 in the general national road and to maintain effectively, Introduction of GPR system mounted in the vehicle has been considered. In this research, the comparison and analysis of bridge deck condition on general national road has been performed with major variations of superstructure type, span lengths, located region and ages by using 'the current status of road bridge and tunnel' that is provided by MLTM(Ministry of Land, Transport and Maritime Affairs). As a result, Condition assessment grade, superstructure type, age and length were derived as a major factor to determine priority for the condition assessment.

Vehicular Collision Risk Assessment on the Highway Bridges in South Korea (국내 고속도로 교량의 차량 충돌 위험도 평가)

  • Min, Geun-Hyung;Kim, Woo-Seok;Cho, Jun-Sang;Gil, Heung-Bae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.9-17
    • /
    • 2016
  • Vehicle collision to bridges has been known as one of the causes of bridge collapse, and the emergency plans and disaster management has been recently emphasized to secure public safety. This study conducted risk assessment of vehicular collision to bridges for highway bridges in Korea. Risk assessment consists of three steps; preliminary risk analysis(PRA), simplified risk analysis(SRA) and detailed risk analysis(DRA). The PRA firstly screens out the possibility of occurrence of the event. The SRA identifies influencial factors to risk of the event and evaluates risk scores to determine risk levels and necessity of DRA that investigates the risk of the bridge in detail. This study focuses on the methodology of the risk assessment, especially the SRA, and the stratification methods which evaluate risk levels of vehicular collision. The analysis results were compared to the reported vehicular collision accidents. The proposed method can be utilized in similar disaster management area.

Concrete Median Barrier Performance Improvement using Stiffness and Flexibility Reinforcement (강성 및 연성 보강을 통한 콘크리트 중앙분리대 성능 향상 분석)

  • Kim, Chan-Hee;Kim, Woo Seok;Lee, Ilkeun;Lee, Jaeha
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.23-31
    • /
    • 2018
  • Recently, there was an collision accident of vehicle-concrete median barrier and unfortunately, passengers were killed by exceeded capacity of concrete median. Therefore, improving the capacity of concrete median barrier is need to reduce damage. Accordingly, in this study, appropriate collision model verified by using the FE analysis program LS-Dyna and recommend a concrete median barrier section. The improvement parameters such as wire mesh diameter, steel plate, rubber pad were selected for improved capacity of the median barrier. Finally, section of concrete median barrier improved wire mesh diameter decreased volume loss, section of concrete median barrier improved rubber pad accepted impact loading and increased elastic area.

Compressive Strength Estimation Technique of Underwater Concrete Structures using Both Rebound Hardness and Ultrasonic Pulse Velocity Values (반발경도와 초음파속도를 이용한 수중 콘크리트 구조물의 압축강도 예측 기술)

  • Shin, Eun-Seok;Lee, Ji-Sung;Park, Seung-Hee;Han, Sang-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.118-125
    • /
    • 2014
  • As the earth's current global warming has caused elevation of sea water temperature, size of storms is foreseen to increase and consequently large damages on port facilities are to be expected. In addition, due to the improved processing efficiency of port cargo volume and increasing necessity for construction of eco-friendly port, demands for various forms of port facilities are anticipated. In this study, two kinds of nondestructive evaluation (NDE) techniques (rebound hardness and ultrasonic pulse velocity methods) are investigated for the effective maintenance of smart green harbor system. A new methodology to estimate the underwater concrete strengths is proposed and its feasibility is verified throughout a series of experimental works.