• Title/Summary/Keyword: Vehicle handling dynamics

Search Result 47, Processing Time 0.021 seconds

VEHICLE DYNAMIC CONTROL ALGORITHM AND ITS IMPLEMENTATION ON CONTROL PROTOTYPING SYSTEM

  • Zhang, Y.;Yin, C.;Zhang, J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.167-172
    • /
    • 2006
  • A design of controller for vehicle dynamic control(VDC) and its implementation on the real vehicle were introduced. The controller has been designed using a three-degrees-of-freedom(3DOF) yaw plane vehicle, and the control algorithm was implemented on the vehicle by control prototyping system dSPACE. A hybrid control algorithm, which makes full use of the advantages of robust and fuzzy control, was adopted in the control system. Field test results show that the performance of the vehicle handling dynamics with hybrid controller is improved obviously compared to that without VDC and with simple robust controller on skiddy roads(friction coefficients lower than 0.3).

Co-Simulation and Simulation Integration Technology Development for SUV Vehicle Equipped with Electric Power Steering (EPS) (SUV - EPS 차량의 동시 시뮬레이션 기술 개발 및 시뮬레이션 통합 기술 개발)

  • B. C. Jang;Y. K. Eom
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.472-475
    • /
    • 2003
  • Electric Power Steering (EPS) mechanism has become widely equipped in passenger vehicle due to the environmental consciousness and higher fuel efficiency. This paper describes the development of co-simulation technique and simulation integration technique of EPS control system with dynamic vehicle model. A full vehicle model interacted with EPS control algorithm is concurrently simulated on a single bump road condition. Dynamic responses of vehicle chassis and steering system resulting from road surface impact are evaluated and compared with proving ground experimental data. The comparisons will show reasonable agreement on tie-rod load. rack displacement, handle-wheel torque and tire center acceleration. This developed simulation capability can be used for EPS performance evaluation and calibration as well as for vehicle handling performance integration and synthesis.

  • PDF

Development of Objective Vehicle Ride Index (차량 승차감 평가지수 개발에 관한 연구)

  • 장한기;김승한;정용현;장진희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.450-454
    • /
    • 2001
  • The aim of the study is to develope an objective index for the evaluation of vehicle ride comfort using the measured vehicle accelerations. The equation of the index was derived from the correlation analysis of subjective ratings on selected vehicles and the reduced measure of the vehicle motions. First whole procedure of from the measurements to the calculation of the perceptual vibration was developed. Test condition of both the vehicle speed and the road condition was selected so as to maximize the reliability of the index. This paper suggested the equation of the objective ride index on vibration harshness, of which expected error is about 0.3 in 10 scale of subjective rating at 95% of the significance level.

  • PDF

Modeling of Stabilizer for Vehicle Dynamic Analysis (차량동역학 해석에서 스태필라이저의 모델링)

  • Cho, Byoung-Kwan;Song, Sung-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.30-35
    • /
    • 1996
  • Tires, bushings and stabilizers are the most difficult elements in vehicle modeling for dynamic analyses. Many studies were performed for tire modeling and the primitive data of bushing elements can be obtained from the suspension designer, but there are few things for stabilizer. This paper presents simulation results for the 3 kinds of stabilizer model with the multi-body dynamic analysis program ADAMS. Each simulation result was compared with the vehicle test result, and the stabilizer model was proposed to analyze the vehicle behaviors precisely.

  • PDF

Development of CAE Tools for Vehicle Suspension Design(I) -Development of a Bushing Module- (자동차 서스펜션 설계를 위한 CAE기법의 개발(I) -부싱 모듈 개발-)

  • Choi, Y.C.;Kim, K.S.;Kim, O.J.;Yoo, W.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.31-39
    • /
    • 1998
  • The role of bushing elements linked between suspension parts is to enhance ride quality and handling stability by the spring and damping effect from the elastic deformation. In this paper, a theoretical derivation and computer implementation off a bushing element are proposed. Three different vehicle models are generated to test the developed bushing module. The developed bushing module is implemented as a bushing module in the vehicle dynamic analysis program AUTODYN7.

  • PDF

Lateral Stability Control for Rear Wheel Drive Vehicles Using Electronic Limited Slip Differential (전자식 차동 제한장치를 이용한 후륜구동 차량의 횡방향 안정성 제어)

  • Cha, Hyunsoo;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.6-12
    • /
    • 2021
  • This paper presents a lateral stability control for rear wheel drive (RWD) vehicles using electronic limited slip differentials (eLSD). The proposed eLSD controller is designed to increase the understeer characteristic by transferring torque from the outside to inside wheel. The proposed algorithm is devised to improve the lateral responses at the steady state and transient cornering. In the steady state response, the proposed algorithm can extend the region of linear cornering response and can increase the maximum limit of available lateral acceleration. In the transient response, the proposed controller can reduce the yaw rate overshoot by increasing the understeer characteristic. The proposed algorithm has been investigated via computer simulations. In the simulation results, the performance of the proposed controller is compared with uncontrolled cases. The simulation results show that the proposed algorithm can improve the vehicle lateral stability and handling performance.

Development of Tire Lateral Force Monitoring Systems Using Nonlinear Observers (비선형 관측기를 이용한 차량의 타이어 횡력 감지시스템 개발)

  • 김준영;허건수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.169-176
    • /
    • 2000
  • Longitudinal and lateral forces acting on tires are known to be closely related to the tract-ability braking characteristics handling stability and maneuverability of ground vehicles. In thie paper in order to develop tire force monitoring systems a monitoring model is proposed utilizing not only the vehicle dynamics but also the roll motion. Based on the monitoring model three monitoring systems are developed to estimate the tire force acting on each tire. Two monitoring systems are designed utilizing the conventional estimation techniques such as SMO(Sliding Mode Observer) and EKF(Extended Kalman Filter). An additional monitoring system is designed based on a new SKFMEC(Scaled Kalman Filter with Model Error Compensator) technique which is developed to improve the performance of EKF method. Tire force estimation performance of the three monitoring systems is compared in the Matlab simulations where true tire force data is generated from a 14 DOF vehicle model with the combined-slip Magic Formula tire model. The built in our Lab. simulation results show that the SKFMEC method gives the best performance when the driving and road conditions are perturbed.

  • PDF

Development of Tire Lateral Force Monitoring System Using SKFMEC (SKFMEC를 이용한 차량의 타이어 횡력 감지시스템 개발)

  • Kim, Jun-Yeong;Heo, Geon-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1871-1877
    • /
    • 2000
  • Longitudinal and lateral forces acting at tire are known to be closely related to the tractive ability, braking characteristics, handling stability and maneuverability of ground vehicles. However, it is not feasible in the operating vehicles to measure the tire forces directly because of high cost of sensors, limitations in sensor technology, interference with the tire rotation and harsh environment. In this paper, in order to develop tire force monitoring system, a new vehicle dynamics monitoring model is proposed including the roll motion. Based on the monitoring model, tire force monitoring system is designed to estimate the lateral tire force acting at each tire. A newly proposed SKFMEC (Scaled Kalman Filter with Model Emr Compensator) method is developed utilizing the conventional EKF (Extended Kalman Filter) method. Tire force estimation performance of the SKFMEC method is evaluated in the Matlab simulations where true tire force data is generated from a 14 DOF vehicle model with a combined-slip Magic Formula tire model.

A Study on Vehicle Steering Feel Using Objective Measurement (실차 계측을 이용한 차량 조향감 성능 연구)

  • Kim, Jung-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.161-170
    • /
    • 2007
  • As one of the major handling performances of the vehicle and tire, the steering feel is very important in the high speed where safety and refinement is a major concern for the drivers. This paper presents both subjective and objective techniques for the assessment of the steering feel including the on-center feel and steering response. For this, subjective evaluation method of the steering feel was studied at first and then objective parameters were selected by considering the process by which the steering feel is evaluated subjectively. From statistical analysis of subjective and objective data for the several vehicles and professional drivers, it was found that the subjective assessment of the steering feel could be successfully explained by means of the suggested objective parameters. Also, the main objective parameters related to the subjective assessment of the steering feel could be found.

Analysis of Transient Maneuvers for Objectifying Evaluation of Vehicle Stability (차량 안정성 평가의 객관화를 위한 과도 운동 분석)

  • Kim, Jung-Sik;Kim, Young-Tae;Yoon, Yong-San
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.167-175
    • /
    • 2006
  • Directional stability is important performance in vehicle and tire design. The current methods to analyze this is generally based on linear concept. Using the existing concept, it cannot realistically explain the subjective assessment at all because it is hard to practically represent the nonlinear behaviour of a complex vehicle system in reality. In this paper, new method to analyze directional stability is introduced. At first, directional stability of vehicle is categorized into yaw, rear axle, and roll stability. In order to objectify these items, driver perceptual parameters based on subjective assessment are used. Using the perceptual parameters, it can successfully explain the transient maneuver of vehicle and extract objective parameters for directional stability. Finally, these objective parameters are successfully validated through two handling tests, lane change and severe lane change. The correlation results show that there exists a good correlation between subjective assessment and the proposed objective parameters.