• 제목/요약/키워드: Vehicle handling dynamics

검색결과 47건 처리시간 0.022초

ADAMS를 이용한 차량 조종안정성 해석 (An Analysis of Vehicle Handling Characteristics with ADAMS)

  • 조병관;송성재
    • 한국자동차공학회논문집
    • /
    • 제4권5호
    • /
    • pp.109-118
    • /
    • 1996
  • An analysis of handling characteristics of a vehicle is performed for step and pulse steering input, which may be very useful in suspension design stage. Many developed computer programs for vehicle dynamics require test data of compliance effects for proto type car. Therefore, these programs are not suitable for automobile development stage. Using the raw design data of suspension and steering system, we analyze the vehicle behavior for step and pulse steering input with commercial multibody dynamics program, ADAMS. Simulated results are in good agreement with vehicle test results. Vehicle handling characteristics parameters which are very useful in automobile suspension design are evaluated from the analysis.

  • PDF

실시간 다물체 차량동역학 소프트웨어 개발 Part II: Matlab GUI와 VR Toolbox를 이용한 전후처리 프로그램 (Development of Real-time Multibody Vehicle Dynamics Software Part II: Preprocessor and Postprocessor Using MATLAB GUI and VR Toolbox)

  • 하경남;정완희;김성수;정도현;탁태오
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.169-175
    • /
    • 2009
  • Real-time multibody vehicle dynamics software has been developed for virtual handling tests. The software can be utilized for HILS(Hardware In the Loop Simulations) and consists of three modules such as a graphical vehicle modeling preprocessor, a real time dynamics solver, and a virtual reality graphic postprocessor for virtual handling tests. In the graphical vehicle modeling preprocessor, vehicle hard point data for a suspension model are automatically converted into multibody vehicle model. In the real time dynamics solver, the efficient subsystem synthesis method is used to create multibody equations of motion for a subsystem by a subsystem. In the virtual reality graphic postprocessor, an animator has been also developed by using Matlab Virtual Reality Toolbox for virtual handling tests.

DADS를 이용한 초기 설계 단계에서의 경기용 차량의 핸들링 특성 해석 (Analysis of Race Car Handling Characteristics Using DADS in Initial Design Step)

  • 장운근
    • 한국산업융합학회 논문집
    • /
    • 제11권2호
    • /
    • pp.71-82
    • /
    • 2008
  • In this study, 3 dimensional non-linear race car vehicle model including Chassis, steering and suspension systems were modeled by using Multi-Body Dynamics Simulation Program, DADS 9.5(Dynamic Analysis and Design System),which was used in kinematic and dynamic analysis. A full race car vehicle dynamics model using DADS program was presented and analysis was carried out to estimate the handling characteristics that may be very useful to design a race car in early design stage. The simulation of vehicle handling behavior for step steering input was simulated and compared with different design parameters: torsional stiffness of the front and rear anti roll bars, the motion ratio of the front and rear suspension system, the location of the tie rod joint, in multibody dynamic model. Therefore this simulation model before race car construction in early design step will be helpful for race car designer to save time and limited budget.

  • PDF

후륜 캠버각 변화가 차량 조종성능에 미치는 효과 분석 (Analysis of Vehicle Handling Performance due to Camber Angle Change of Rear Wheel)

  • 박성준;손정현
    • 한국자동차공학회논문집
    • /
    • 제18권2호
    • /
    • pp.67-73
    • /
    • 2010
  • In this study, a camber angle generating mechanism for rear suspension is suggested. An experimental device is implemented and tested. A full vehicle model with camber angle generating device by using ADAMS/Car is modeled. Rear left wheel and rear right wheel have 5 different camber angles in the simulations, respectively. Step steer and pulse steer simulations are carried out for investigating the effects of vehicle handling performance due to camber angle control of rear suspension. According to the results, the camber angle of rear suspension affects the vehicle handling performance during both simulations. Therefore, when the vehicle makes the right turn or left turn, left and right wheel should have the proper orientation for improving the handling performance, respectively.

전륜 및 후륜 캠버각 변화에 따른 차량 조종성능 효과 분석 (Effects on Vehicle Handling Performance according to Camber Angle Change of Front and Rear Wheel)

  • 박성준;손정현
    • 한국자동차공학회논문집
    • /
    • 제19권6호
    • /
    • pp.23-29
    • /
    • 2011
  • In this study, a camber angle generating mechanism for front and rear suspension is suggested. An experimental device is implemented and tested. A full vehicle model with camber angle generating device by using ADAMS/Car is modeled. Step steer simulations are carried out for investigating the effects of vehicle handling performance due to camber angle change of front and rear wheel. According to results, the camber angle of rear suspension affects the vehicle handling performance during both simulations. Therefore, when the vehicle makes the right turn or left turn, left and right wheel of front and rear suspension should have the proper orientation for improving the handling performance, respectively.

퍼지제어기를 이용한 차동브레이크 시스템의 능동 조향제어 (Active Handling Control of the Differential Brake System Using Fuzzy Controller)

  • 윤여흥;장봉춘;이성철
    • 한국정밀공학회지
    • /
    • 제20권5호
    • /
    • pp.82-91
    • /
    • 2003
  • Vehicle dynamics control (VDC) has been a breakthrough and become a new terminology for the safety of a driver and improvement of vehicle handling. This paper examines the usefulness of a brake steer system (BSS), which uses differential brake forces for steering intervention in the context of VDC, In order to help the car to turn, a yaw moment can be achieved by altering the left/right and front/rear brake distribution. The steering function achieved through BSS can then be used to control lateral position in an unintended road departure system. An 8-DOF non-linear vehicle model including STI tire model will be validated using the equations of motion of the vehicle, and the non-linear vehicle dynamics. Since fuzzy logic can consider the nonlinear effect of vehicle modeling, fuzzy controller is designed to explore BSS feasibility, by modifying the brake distribution through the control of the yaw rate of the vehicle. The control strategies developed will be tested by simulation of a variety of situation; the possibility of VDC using BSS is verified in this paper.

3차원 차량모델을 이용한 자동차 주행거동의 컴퓨터 시뮬레이션 (Computer Simulations of 4-Wheeled Vehicle Manoeuvres Using a 3-Dimensional Double-Track Vehicle Model)

  • 최영휴;이재형;이장무
    • 한국자동차공학회논문집
    • /
    • 제3권3호
    • /
    • pp.97-108
    • /
    • 1995
  • A 3-dimensional double track vehicle model, that has 12-degress-of-freedom, was proposed to analyze handling and riding behaviours of an automotive car. Nonlinear characteristics of the suspension and steering systems of the vehicle model were considered in its equations of motion, which were solved by using the 4th-order Runge-Kutta integration method. Computer simulations for lane change, steady-state handling, and running-over-bump manoeuvres were made and verified by vehicle tests on proving ground. The computed results of the proposed model showed better agreement with test results than those of the conventional 2-dimensional single track model did. Especially they showed good accuracy near the characteristic speed and in high lateral accelerated manoeuvres.

  • PDF

해석 및 설계 프로세스 통합을 통한 차량 후륜 현가장치 최적화 (Optimal Vehicle Rear Suspension through Integration of Analysis and Design Process)

  • 김도원;박도현;이진화;신상하;최진호;최병렬;최동훈
    • 한국자동차공학회논문집
    • /
    • 제22권4호
    • /
    • pp.72-81
    • /
    • 2014
  • In this study, we perform the optimization of trailing arm bush in a vehicle rear suspension to improve the ride and handling performance. A design problem was formulated considering 2 objective functions and 7 constraints related to vehicle ride and handling performance. PIAnO, one of the PIDO (Process Integration and Design Optimization) tool, was used to automate analysis procedures and perform a design optimization. In order to assess relation between performances and design variables, we perform the DOE (Design of Experiments). To find the optimal solution, we used Progressive quadratic response surface method (PQRSM), one of the design optimization techniques equipped in PIAnO. As an optimization result, we got an optimal solution and could improve lateral force steer off-center by 43.0% while decreasing brake compliance at wheel center by 8.1%.

시변 절환면을 갖는 슬라이딩 모드에 의한 차량의 횡방향 운동제어 (Control of Vehicle Lateral Dynamics using Sliding Mode with Time-Varying Switching Surface)

  • 이창로;양현석;박영필
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.458-463
    • /
    • 2000
  • This paper presents a design of the controller for vehicle lateral dynamics using active yaw moment. Vehicle lateral motion is incorporated with directional controllability and stability. These are conflicting each other from the view of vehicle handling performance. To compromise the trade-off between these two aspects, we suggest a new control algorithm based on the sliding mode with time-varying switching surface according to the body side slip angle. The controller can deal with the nonlinear region in vehicle driving and be robust to the parameter uncertainties in the plant model. Control performance was evaluated from the simulation.

  • PDF

등가 코너링강성을 사용한 차량의 조종안정성에 대한 민감도 해석 (Application of Sensitivity Analysis to Vehicle Handling with Equivalent Cornering Stiffness)

  • 이창노
    • 한국산학기술학회논문지
    • /
    • 제13권4호
    • /
    • pp.1434-1439
    • /
    • 2012
  • 차량은 여러 가지 설계변수가 결합된 동적계이다. 차량의 운동특성은 이러한 설계변수의 변화에 따라 변하게 된다. 설계변수의 조종안정성에 대한 영향을 파악하기 위하여 현가장치나 조향장치 특성이 포함된 등가코너링강성을 고려한 차량의 조종안정성 모델에 대하여 수치해법에 의한 민감도 해석을 수행하였다. 민감도 해석결과로부터 차량설계변수인 무게중심위치, 타이어 코너링특성, 현가장치 및 조향장치의 특성의 변화에 대한 정상상태이득, 스테빌리티 팩타, 주파수응답 등 차량 조종안정성의 변화율을 파악할 수 있었다. 또한 민감도 해석은 정성적이고 정량적인 결과를 제공하므로 설계단계는 물론 차량개발단계에서도 차량의 성능향상을 위한 설계변수들의 최적화에 사용될 수 있다.