• Title/Summary/Keyword: Vehicle fuel economy

Search Result 306, Processing Time 0.02 seconds

Study on Fuel Economy Characteristics by Cumulative Distance of Vehicle (차량 누적거리에 의한 연비 특성 연구)

  • Lim, Jae-Hyuk;Kim, Ki-Ho;Lee, Min-Ho
    • Journal of Power System Engineering
    • /
    • v.21 no.4
    • /
    • pp.57-61
    • /
    • 2017
  • The vehicle label fuel economy is used as an energy management indicator nationwide. It induces technology development of automobile manufacturers and plays a role of providing information when purchasing a consumer vehicle. However, consumers who purchase a new vehicle continued to complain that the label fuel economy is different from the mandatory fuel economy rate. The domestic fuel economy measurement method is the same as the North American measurement method. The results of the two test modes (urban (FTP-75 mode), highway (HWFET mode)) are calculated in five test modes reflecting various environmental conditions and driving patterns 5-cycle correction formula is used which is equivalent to the fuel efficiency value. In this study, to solve the consumers' curiosity about the fuel economy of new vehicle, we use domestic fuel economy measurement method to measure the new car condition within 150 km of driving distance and the cumulative driving distance condition of domestic label fuel economy test vehicle. A comparative evaluation of fuel economy was carried out for a durability vehicle of $6,500{\pm}1,000km$. A result, mean value of the fuel economy of the four gasoline vehicles increased by 2.7 % in the city center mode and by 2.5 % in the highway mode in the durable vehicle compared new vehicle. And in the case of the diesel vehicle it increased by 2.5 % and 3.9 % respectively. The harmful exhaust gas emitted from the vehicle also resulted in more emissions of both gasoline and diesel vehicles in new vehicles. It is considered that the increase of the frictional force of the vehicle driving system and the lubricating oil system would have an effect on the reduction of the fuel economy of the new vehicle, and it was found that the fuel economy and the exhaust gas were improved by proper cumulative distance (domesticate) to the new vehicle.

An Experimental Study on Breakdown of Fuel Consumption on a Component Basis in a Gasoline Engine Vehicle (가솔린 차량의 각 요소별 연료소모량 분석을 위한 실험적 연구)

  • 유정철;송해박;이종화;유재석;박영무;박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.153-161
    • /
    • 2004
  • A vehicle fuel economy is one of the most important issues in view of environmental regulation and customer's needs. In order to improve the vehicle fuel economy, great efforts has been carried out on the components bases. However, systematic analysis of vehicle fuel consumption is necessary for the further improvement of vehicle fuel economy. In this paper, a methodology for the breakdown of vehicle fuel consumption was studied and proposed for systematic analysis of the vehicle fuel economy. The energy equation for the vehicle power train was set up for the analysis of the vehicle fuel economy and simplified to be calculated or estimated using the measured data in a vehicle. The amount of fuel that was used in vehicle components under arbitrary driving conditions was quantified.

A Study of the Fuel Economy Improvement of a Heavy Duty in Commercial Vehicle(I) (상용차 탑재 대형엔진의 차량연비 개선 연구(I))

  • Lyu, Myung-Seok;Doo, Byung-Mann;Ku, Young-Gon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.44-48
    • /
    • 2008
  • This paper describes on studies of the heavy duty engine calibration for better fuel economy based on real driving conditions. Using testbed validated software simulation of the engine and turbocharger system, an alternative turbocharger specification, with potential to improve fuel economy was identified. Secondly, the engine calibration was modified to optimize vehicle fuel economy over a typical customer drive cycle whilst still meeting the steady-state (testbed) emissions legislation. These results were confirmed by field testing of a vehicle equipped with the updated specifications. This study found good agreements between the prediction and the field test on the vehicle fuel economy improvements of the express bus with updated calibration and turbocharger.

Evaluation of Fuel Economy for a Parallel Hybrid Electric Vehicle

  • Park, Dookhwan;Kim, Hyunsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1287-1295
    • /
    • 2002
  • In this work, the fuel economy of a parallel hybrid electric vehicle is investigated. A vehicle control algorithm which yields operating points where operational cost of HEV is minimal is suggested. The operational cost of HEV is decided considering both the cost of fossil fuel consumed by an engine and the cost of electricity consumed by an electric motor. A procedure for obtaining the operating points of minimal fuel consumption is introduced. Simulations are carried out for 3 variations of HEV and the results are compared to the fuel economy of a conventional vehicle in order to investigate the effect of hybridization. Simulation results show that HEV with the vehicle control algorithm suggested in this work has a fuel economy 45% better than the conventional vehicle if braking energy is recuperated fully by regeneration and idling of the engine is eliminated. The vehicle modification is also investigated to obtain the target fuel economy set in PNGV program.

Vehicle Fuel Economy Improvement by Studies on the Engine Cooling and Ancilliaries System of the Heavy Duty Engine (차량 연비 향상을 위한 대형 디젤엔진 차량의 엔진 냉각 및 부대장치 연구)

  • Lyu, Myung-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.79-84
    • /
    • 2007
  • Recently it is strongly required to develop the better fuel economy as well as basic power performance based on strict emission legislation. This paper focuses on studies of the engine cooling and ancillaries system among fuel economy factors in the developing stage. Firstly through the analysis of the current specifications, it is assessed whether each components may be designed properly, not overdesigned. Secondly, it is predicted how the fuel economy of each components can be improved. Finally the results are confirmed by vehicle field test equppted with the updatedcomponents. This study found good agreementbetween the prediction and the field test on the vehicle fuel economy improvements of the heavy duty engine vehicle with updated components such as engine cooling and ancilliaries.

Automotive Engine Oil and Vehicle Fuel Economy (자동차 엔진오일과 연비)

  • 이영재;김강출;표영덕
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.155-161
    • /
    • 2000
  • To improve the vehicle fuel economy, various technologies such as improvement of power train efficiency, use of light weight material, improvement of aerodynamic design, have been studied. One of the possible way to improve the vehicle fuel economy is to reduce the engine friction loss by improving the engine oil characteristics. In the present paper, it was examined the effect of the engine oil viscosity and the addition of friction modifier to engine oil on vehicle fuel economy improvements. Moreover, the effect of engine oil degradation on vehicle fuel economy was examined with two gasoline vehicles and one diesel vehicle by using the fuel economy test facility.

  • PDF

A Study on the Fuel Economy Prediction Method Based on Vehicle Power Analysis of PRIUS III (프리우스 III의 차량 출력 분석에 기초한 연비 예측 방안에 관한 연구)

  • Chung, Jae-Woo;Seo, Young-Ho;Choi, Yong-Jun;Choi, Sung-Eun;Kim, Hyoung-Gu;Jung, Ki-Yun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.97-106
    • /
    • 2011
  • Both an optimal design of the engine operating strategy and fuel economy prediction technique for a HEV under the vehicle driving condition are very crucial for the development of vehicle fuel economy performance. Thus, in this study, engine operating characteristics of PRIUS III were analyzed with vehicle running conditions and the correlations between vehicle tractive power and fuel consumption were introduced. As a result, fuel economy performance of PRIUS III with various test modes were predicted and verified. Errors of predicted fuel economy were between -5% and -1%.

A Prediction Study for Fuel Economy Development in an Express Bus (고속버스 연비개선 예측에 관한 연구)

  • Lyu, Myung-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.181-185
    • /
    • 2006
  • A study to get better vehicle fuel economy is described based on an express bus. The approach is based on using a commercial software vehicle simulation to identify the relative efficiency of each of the vehicle systems, such as the engine hardware, engine software calibration, transmission, cooling system and ancillary drives. The simulation-based approach offers a detailed understanding of which vehicle systems are underperforming and by how much the vehicle fuel economy can be improved if those systems are brought up to best-in-class performance. In this way, the optimum vehicle fuel economy can be provided to the vehicle customer. A further benefit is that the simulation requires only a minimum of vehicle testing for initial validation, with all subsequent field test cycles performed in software, thereby reducing development time and cost for the manufacturer.

Effect of Engine Friction on Vehicle Fuel Economy during Warm-up (웜업시 엔진 마찰이 차량 모드 연비에 미치는 영향)

  • Lim, Gun-Byoung;Wi, Hyo-Seong;Park, Jin-Il;Lee, Jong-Hwa;Park, Kyoung-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.109-114
    • /
    • 2008
  • An improvement of vehicle fuel economy is one of the most important topic in automotive engineering. Lots of engineers make efforts to achieve 1% of fuel economy improvement. Engine friction is an important factor influencing vehicle fuel economy. This paper focuses on effect of engine friction on vehicle fuel economy during warm-up. A computer simulation is one of the powerful tools in automotive engineering field. Recently Simulation is attempting to virtual experiment not using expensive instruments. It is possible to presuppose fuel economy by changing the characteristic of accessories using CRUISE(vehicle simulation software). In this paper, fuel consumption at each part of the vehicle is analyzed by both of experiment and simulation. The results of fuel economy analysis on experiment substitute for Cruise to calculate fuel economy. The simulation data such as engine speed, brake torque, shift pattern, vehicle speed, fuel consumption level is well correlated to experiment data. In this paper, the change of warm-up time, faster or slower, through simulation is performed. As a result of the fast warm-up, fuel economy is improved up to 1.7%.

Fuel Economy Comparison according to Driving Mode Conditions of the Internal Combustion Engine Vehicles (내연기관 자동차의 주행모드 조건에 따른 연비 성능 비교)

  • Choi, Yongjun;Seo, Youngho
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.1
    • /
    • pp.25-29
    • /
    • 2013
  • The purpose of this paper is to determine the fuel change and weight change impact on the fuel economy and emission characteristic of ICE (Internal Combustion Engine) vehicle. According to fuel type, fuel consumption and emission characteristics were measured and fuel used in this paper was gasoline, diesel, and LPG. Four vehicles with different weight were tested and the fuel economy were compared and analyzed by using scatter graph. Test was carried out using chassis dynamometer, CVS (Constant Volume Sampler), and emission measurement system. Diesel vehicle less emited $CO_2$ compared to gasoline and LPG. Even if same $CO_2$ between gasoline and LPG, there are difference fuel economy depending on carbon proportion of specific fuel. The heavier weight of vehicle, the worse of fuel economy and Better fuel economy performance on highway driving mode.

  • PDF