• 제목/요약/키워드: Vehicle fuel

검색결과 1,510건 처리시간 0.041초

플러그인 하이브리드 자동차의 배터리와 충전시스템의 특허분석 (A Patent Analysis on the Battery and Rechageable System of the Plug-in Hybrid Car)

  • 장진건;이영신
    • 한국정밀공학회지
    • /
    • 제26권10호
    • /
    • pp.97-107
    • /
    • 2009
  • Recent technologies of the car are focused on improving vehicle's fuel efficiency and developing alternative energy sources. These technologies bring on the development of hybrid car. On the other hand, because of short driving distance, low efficiency of charging and high price, energy storage system need to improve the storage capability. It is very important to understand the existing technologies, grasp the existing patent and establish the technical target to improve the energy storage system. In this paper, technology trends of energy storage system of the hybrid car are analyzed. This study was based on the applied and registered patent in Korea, Japan, U.S.A and Europe until December 2008. The analyses are divided into two categories: a battery system and charging system of the hybrid car. The facts of the level of technology, trends of the R&D of leading companies, key patents, blank of the technology were analyzed. Finally the future R&D strategy of hybrid car are established.

열간가스성형용 알루미늄 개발 합금 공정 조건에 관한 연구 (Study on an Aluminum Modified Alloy and Manufacturing Conditions for Hot Metal Gas Forming)

  • 이경민;고건영;이현철;김동옥;이윤교;김정섭;송종호
    • 소성∙가공
    • /
    • 제26권4호
    • /
    • pp.222-227
    • /
    • 2017
  • In order to respond to environmental regulations and increased demand for fuel economy, the demand for lightweight car bodies has grown. Hydroforming of aluminum is one possible solution as it eliminates the need for additional welding to develop closed cross-sectional parts. However, the low formability of aluminum is a limitation of its application. On the other hand, the ductility of materials can be improved at higher temperatures, and hot metal gas forming has been widely applied in the production of lightweight vehicle parts. In this study, aluminum alloy for pipe extrusion was developed by controlling the Mg:Cr:Mn ratio based on AA5083. Mechanical properties of the developed material were examined by tensile test and were applied to a forming simulation. Cold forming simulation for preforming and non-isothermal hot forming simulation for hot metal gas forming were carried out to validate process conditions. A prototype of the sidemember was manufactured under the given process condition. Finally, thickness distribution was compared with finite element analysis results.

수소복합재용기 TYPE3에 대한 수압반복 거동 평가 (Evaluation on Behavior of Hydraulic Cycling Test for Type3 Hydrogen Composite Cylinder)

  • 조성민;이승훈;류근준;김영규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.98.2-98.2
    • /
    • 2011
  • 지구 온난화의 원인이 되는 이산화탄소를 저감하며 유해한 배기가스를 배출하지 않는 수소연료전지자동차(FCV)에 대한 관심이 높아지고 있다. 한국가스안전공사에서 현재 구축하고 있는 평가장비는 이러한 수소연료전지자동차용으로 사용되는 고압용기의 수압반복시험 및 밸브류로 구성된 고압수소저장시스템의 단품 및 시스템 평가를 통한 안전신뢰성 검증을 목적으로 하고 있다. 현재 수소연료전지자동차는 차량이나 부품의 시험 방법에 대한 통일된 기준/표준/시험법이 아직 완전하게 정비되어 있지 않고, 시장에서의 도입 제도, 기준 등이 만들어지고 있는 현실이다. 또한 연료로 수소를 사용하는 도입단계에 있기 때문에, 수소용기가 반복압력변동에 따라 어떤 거동을 나타내는지에 대한 실험관련 연구가 미진한 상태이다. 따라서 수소연료전지자동차용 고압수소저장시스템에 대한 내구성, 안전성 확보를 위하여 수소연료전지자동차에서 중요한 부품인 용기에 대한 반복피로시험이 필요하다. 특히 복합재 용기 분야에서 Type3용기에 대한 높은 안전성과 내구성이 보고되고 있지만 실질적으로 얼마나 다른 용기에 비해 높은 성능을 가지고 있는지 국내에서는 체계적으로 검증된바 없다. 따라서 구축된 수압반복 장비를 이용하여 Type3 용기에 대한 수압반복시험을 실시하였으며, 이를 통해 수소용기의 거동을 확인하고자 한다.

  • PDF

Experimental Study on the Effect of a Metal Storage Cask and Openings on Flame Temperature in a Compartment Fire

  • Bang, Kyoung-Sik
    • 방사성폐기물학회지
    • /
    • 제18권3호
    • /
    • pp.395-405
    • /
    • 2020
  • Compartment fire tests were performed using kerosene and Jet A-1 as fire sources to evaluate the relationship between flame temperature and opening size. The tests were performed for a fire caused by the release of kerosene owing to vehicle impact, and for a fire caused by the release of Jet-A-1 owing to airplane collision. The compartment fire tests were performed using a 1/3-scale model of a metal storage cask when the flame temperature was deemed to be the highest. We found the combustion time of Jet-A-1 to be shorter than that of kerosene, and consequently, the flame temperature of Jet-A-1 was measured to be higher than that of kerosene. When the opening was installed on the compartment roof, even though the area of the opening was small, the ventilation factor was large, resulting in a high flame temperature and long combustion. Therefore, the position of the opening is a crucial factor that affects the flame temperature. When the metal storage cask was stored in the compartment, the flame temperature decreased proportionally with the energy that the metal storage cask received from the flame.

디젤자동차용 웜업촉매 내의 유동장에 미치는 터보차저 및 배플의 영향에 관한 수치해석 (Numerical Analysis of Effective Turbocharger and Baffle on Flow Field in Warm-up Catalyst for Diesel Vehicles)

  • 최병철;정우남;강창혁;위대웅
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.29-36
    • /
    • 2008
  • Diesel vehicle is growing in importance in light-duty sector as a way of reducing greenhouse gases due to improved fuel economy. Carbon monoxide, gas-phase hydrocarbon and organic fraction of diesel particulates can be oxidized to harmless products using a diesel warm-up catalyst (WCC). This study investigated the effect of a turbocharger and a baffle on flow fields and temperature distributions in the WCC for Diesel vehicles by a numerical analysis. In the case of the WCC with the turbocharger, velocity vectors and temperatures of inlet of the WCC have the relatively homogeneous distributions by the swirl generated from the turbocharger. Velocity vectors and temperatures of inlet of the WCC with the turbocharger and the baffle have the improved distributions in homogeneity compared with the case of the WCC without the baffle. The homogeneous flow field and the temperature distribution in the WCC may contribute to improve the conversion performance of the catalysts.

노후 차량의 배기가스 측정을 이용한 산소센서, 인젝터, 점화2차파형의 파형분석 연구 (A Study on Waveform Analysis of Oxygen Sensor, Injector and Secondary Waveform through Emission Characteristics by a Decrepit Vehicle)

  • 유종식;김철수
    • 한국자동차공학회논문집
    • /
    • 제21권5호
    • /
    • pp.151-156
    • /
    • 2013
  • The experiment was done on cars travelling at the speeds of 20km/h, 60km/h and 100km/h using the performance testing mode for chassis dynamometer. In this experiment, the relativity between the secondary waveform coming from ignition coil and exhaust emissions were measured in case of cars with failures, in oxygen sensor, spark plugs. The following results obtained by analysis of the relativity between the secondary waveform and exhaust emissions. 1) When the oxygen sensor is failure, the average value of CO emission measured was 6.8 times higher than the standard CO emission value and the average value of HC emission measured was 2.3 times higher than the standard emission level. 2) When engine parts are in failure, more fuel enters the cylinder due to longer opening duration of injector, and it tended to make CO and HC emission values increase. 3) Combustion duration, the shape of flame propagation during spark line, and the size of the discharge-induced energy were the three main elements that directly cause variations in CO and HC emission values.

컴퓨터 시뮬레이션을 이용한 자동차용 스프링 링크의 경량화 설계 (Light-weight Design of Automotive Spring Link Based on Computer Aided Engineering)

  • 박준협;김기주;윤준규
    • 한국자동차공학회논문집
    • /
    • 제21권5호
    • /
    • pp.157-161
    • /
    • 2013
  • It is well known that the targeted fuel efficiency could only be achieved by more than 40% reduction of the vehicle weight through improved design and extensive utilization of lightweight materials. In order to obtain the goal of the weight reduction of automobiles, the researches about lighter and stronger spring link have been studied without sacrificing the safety of automotive components. In this study, the weight reduction design process of spring link could be proposed based on the variation of von-Mises stress contour by substituting an aluminum alloys (A356) having tensile strength of 245 MPa grade instead of SAPH440 steels. In addition, the effect of the stress and stiffness on shape variations of the spring link were examined and compared carefully. It could be reached that this approach could be well established and be contributed for light-weight design guide and the safe design conditions of the automotive spring link development.

Preliminary Study of Energy and GHG Footprint of CFRP Recycling Method using Korea Database

  • 프티차이위본피라다;이철규;김용기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.247-250
    • /
    • 2009
  • Awareness of resource conservation and pollution prevention has been continually increasing. The proven benefits from CFRP's unique combination of light weight and high strength compare to conventional material is well suited for minimizing fuel consumption during vehicle in particular rail operation. Responding the awareness, this work intends to study CFRP's recycling method that is not only technical performance but also environmental view point. According to prior work of technical performance test, this work aims at quantifying the footprint of energy and GHG derived from the two appreciated performance of pyrolysis and acids recycling methods. The streamline LCA is the concept for systematic assessment. The boundary is scoped at the recycling activity, consequently, the data in and out from the specific target activity are obtained under the gate to gate data collection. Its function is recovery carbon fiber. To count and compare function, functional unit is set at 60% of recycling rate. Korea database is mainly source for acquiring the footprint of both. The numerical results presented that the energy footprint of acids and pyrolysis is 164.95 and 1,199.88 MJ-eq., respectively. Meantime, the GHG footprint of is 1,196.22 and 5,916.08 g CO2 eq. for acids and pyrolysis. In summary, the acids recycling method is, in regarding the environmental performance, better than pyrolysis recycling method.

  • PDF

굴삭기 IMV용 비례전자밸브의 동특성 (Dynamic Characteristics of Electro-hydraulic Proportional Valve for an Independent Metering Valve of Excavator)

  • 강창남;윤소남;정황훈;김문곤
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권2호
    • /
    • pp.46-51
    • /
    • 2018
  • Many research studies have been carried out related to saving energy and environmental pollution in the field of construction machinery. The best solution for reducing the related environmental pollution is to reduce fuel consumption by upgrading the energy efficiency of machinery used in this field. An efficiency upgrade in the field of construction machinery would mean minimizing the pressure loss in hydraulic pipe lines or achieving optimal operating conditions while responding to a load. One way to achieve this is to make an equivalent circuit, like an electrohydrostatic actuator, or to improve the spool type valve using the 4/3 way method. This study deals with an electrohydraulic proportional flow control valve. SimulationX software is used as a simulation tool for analyzing the dynamic characteristics. The analysis results, including the performance and characteristics of design parameters, are discussed and the validity of the theoretical analysis is also evaluated.

고속회전기 적용을 위한 매입형 영구자석 전동기의 설계 및 실험적 검증 (Design and Experimental Verification of an Interior Permanent Magnet Motor for High-speed Machines)

  • 김성일;이근호;이창하;홍정표
    • 전기학회논문지
    • /
    • 제59권2호
    • /
    • pp.306-310
    • /
    • 2010
  • On account of small size and light weight, a high-speed machine is regarded as a key technology for many future applications of drive systems. In high-speed applications, permanent magnet synchronous motors have a number of merits such as high efficiency and high power density. Therefore, they are suitable for driving the air-blower of a fuel cell electric vehicle (FCEV) where space and energy savings are critical. Particularly, a surface-mounted permanent magnet synchronous motor (SPMSM) of them is mainly used as a high-speed machine. However, the motor has a fatal flaw due to a retaining can to maintain the mechanical integrity of a rotor assembly. The can results in the increase of magnetic air-gap length in the SPMSM. Thus, in this paper, an interior permanent magnet synchronous motor (IPMSM) is applied in order to drive the air-blower of FCEV instead of the SPMSM, and the experimental results of two models are compared to verify the capability of the IPMSM for high-speed applications.