• Title/Summary/Keyword: Vehicle experiment

Search Result 1,152, Processing Time 0.06 seconds

Generation of Displacement Signal for Realizing Road Profile using the Accelerometer (가속도계를 이용한 노면형상재현 변위신호 생성)

  • Kim, Jong-Tye;Kim, Cheol-Woo;Kim, Taek-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.2
    • /
    • pp.39-45
    • /
    • 2010
  • In the recent years, it is important to evaluate the durability and the reliability of the vehicle, aircraft, and structure. Especially, in case of the vehicle, the durability and reliability are tested by driving test after making prototype vehicles. However, these methods require many costs and efforts for the experiment are needed to react the defects of product. This problems can be settled by simulator which supplies the realistic environments. In this parer, four-axial road simulator with hydraulic power and driving program to operate are made up. The displacement road profile is realized by accelerometers. For the verification the real-vehicle experiment is executed and road profile obtained from the experiment is verified by four-axial road simulator.

A Simulation Analysis on the Assembly System of Mobile Bath Vehicles (이동식 목욕차량의 조립시스템에 대한 시뮬레이션 분석)

  • Chung, Hoyeon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.93-101
    • /
    • 2021
  • The purpose of this study is to analyze the adequacy of production capacity of the assembly process system of mobile bath vehicle's top box panel and process design through a simulation analysis. Towards this end, the layout of the facility designed with pre-verification job using a simulation modeling and an experiment, and facility, logistics process, and personnel input method were made into a simulation model, and the design system's adequacy was evaluated through an experiment. To produce 120 mobile bath vehicles annually, it was analyzed that 14 general workers and seven skilled workers were adequate through the experiment. It was also identified that three painting process lines carried out through outsourcing were adequate. Production lead time was 201.7 hours on average and it was 230 hours maximum. To meet customer delivery service level of 95% within the deadline when establishing a customer order and vehicle delivery plan, it was analyzed that more than 215 hours of lead time is needed minimum. If the process cycle time is reduced to 85% upon system stabilization and skillfulness improvement, it was analyzed that annual output of 147 vehicles can be achieved without additional production line expansion.

The implementation of a Lateral Controller for the Mobile Vehicle using Adaptive Fuzzy Logics (적응퍼지논리를 이용한 Mobile Vehicle의 횡방향 제어기 구현)

  • Kim, Myeong-Jung;Lee, Chang-Gu;Kim, Seong-Jung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.5
    • /
    • pp.249-256
    • /
    • 2000
  • This paper deals with the control of the lateral motion of a mobile vehicle. A mobile vehicle using in this experiment is able to adapt many unmanned automatic driving system, for example, like a automated product transporting system. This vehicle is consist of the two servomotors. One is used to accelerate this vehicle and the another is used to change this lateral direction. An adaptive fuzzy logic controller(AFLC) is designed and applied to a experimental mobile vehicle in order to achieve the control of the lateral direction. An adaptive fuzzy logic controller(AFLC) is designed and applied to a experimental mobile vehicle in order to achieve the control of the lateral motion of the vehicle. Therefore, the main aim of this paper is investigate the possibility of applying adaptive fuzzy control algorithms to a microprocessor-based servomotor controller which requires faster and more accurate response compared with many other industrial processes. Fuzzy control rules are derived by modelling an expert's driving actions. Experiments are performed using a mobile vehicle with sensing units, a microprocessor and a host computer.

  • PDF

A Study on improving the performance of License Plate Recognition (자동차 번호판 인식 성능 향상에 관한 연구)

  • Eom, Gi-Yeol
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.203-207
    • /
    • 2006
  • Nowadays, Cars are continuing to grow at an alarming rate but they also cause many problems such as traffic accident, pollutions and so on. One of the most effective methods that prevent traffic accidents is the use of traffic monitoring systems, which are already widely used in many countries. The monitoring system is beginning to be used in domestic recently. An intelligent monitoring system generates photo images of cars as well as identifies cars by recognizing their plates. That is, the system automatically recognizes characters of vehicle plates. An automatic vehicle plate recognition consists of two main module: a vehicle plate locating module and a vehicle plate number identification module. We study for a vehicle plate number identification module in this paper. We use image preprocessing, feature extraction, multi-layer neural networks for recognizing characters of vehicle plates and we present a feature-comparison method for improving the performance of vehicle plate number identification module. In the experiment on identifying vehicle plate number, 300 images taken from various scenes were used. Of which, 8 images have been failed to identify vehicle plate number and the overall rate of success for our vehicle plate recognition algorithm is 98%.

  • PDF

A method based on Multi-Convolution layers Joint and Generative Adversarial Networks for Vehicle Detection

  • Han, Guang;Su, Jinpeng;Zhang, Chengwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1795-1811
    • /
    • 2019
  • In order to achieve rapid and accurate detection of vehicle objects in complex traffic conditions, we propose a novel vehicle detection method. Firstly, more contextual and small-object vehicle information can be obtained by our Joint Feature Network (JFN). Secondly, our Evolved Region Proposal Network (EPRN) generates initial anchor boxes by adding an improved version of the region proposal network in this network, and at the same time filters out a large number of false vehicle boxes by soft-Non Maximum Suppression (NMS). Then, our Mask Network (MaskN) generates an example that includes the vehicle occlusion, the generator and discriminator can learn from each other in order to further improve the vehicle object detection capability. Finally, these candidate vehicle detection boxes are optimized to obtain the final vehicle detection boxes by the Fine-Tuning Network(FTN). Through the evaluation experiment on the DETRAC benchmark dataset, we find that in terms of mAP, our method exceeds Faster-RCNN by 11.15%, YOLO by 11.88%, and EB by 1.64%. Besides, our algorithm also has achieved top2 comaring with MS-CNN, YOLO-v3, RefineNet, RetinaNet, Faster-rcnn, DSSD and YOLO-v2 of vehicle category in KITTI dataset.

Deep Neural Networks Learning based on Multiple Loss Functions for Both Person and Vehicles Re-Identification (사람과 자동차 재인식이 가능한 다중 손실함수 기반 심층 신경망 학습)

  • Kim, Kyeong Tae;Choi, Jae Young
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.891-902
    • /
    • 2020
  • The Re-Identification(Re-ID) is one of the most popular researches in the field of computer vision due to a variety of applications. To achieve a high-level re-identification performance, recently other methods have developed the deep learning based networks that are specialized for only person or vehicle. However, most of the current methods are difficult to be used in real-world applications that require re-identification of both person and vehicle at the same time. To overcome this limitation, this paper proposes a deep neural network learning method that combines triplet and softmax loss to improve performance and re-identify people and vehicles simultaneously. It's possible to learn the detailed difference between the identities(IDs) by combining the softmax loss with the triplet loss. In addition, weights are devised to avoid bias in one-side loss when combining. We used Market-1501 and DukeMTMC-reID datasets, which are frequently used to evaluate person re-identification experiments. Moreover, the vehicle re-identification experiment was evaluated by using VeRi-776 and VehicleID datasets. Since the proposed method does not designed for a neural network specialized for a specific object, it can re-identify simultaneously both person and vehicle. To demonstrate this, an experiment was performed by using a person and vehicle re-identification dataset together.

Disturbance rejection and performance improvement in a moving vehicle

  • Shin, Kyoo-Jae;Kim, Go-Do;Kwon, Young-Ahn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.223-226
    • /
    • 1996
  • The moving vehicle with disturbances has the 6 dof motion in the pitching, yawing and rolling directions of two independent axes. The control system in such a moving vehicle has to perform disturbance rejection well. The paper presents PID controller with disturbance rejection function, low sensitivity filter and notch the bending frequency rejection. The performance of a designed system has been certified by the simulation and experiment results.

  • PDF

Analysis of a Vehicle Performance Using Taguchi Method: How does a Torque Converter Affect the Vehicle Performance\ulcorner (다구찌 방법을 이용한 토크 컨버터의 차량 연비 및 가속성능에 미치는 영향 분석)

  • Lee, Chin-Woo;Lim, Won-Sik;Park, Yeong-Il;Lee, Jang-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1085-1091
    • /
    • 2002
  • General vehicle is evaluated by its acceleration, fuel economy, NVH (Noise, Vibration and Harshness) and subjective (such as launching feel) performance. The first step to enhance its performance is to know how much each component affects on the vehicle performance. It is very important to know what is the key factor of the component among many specifications. Hydraulic torque converter can be expressed by means of its performance curve (torque ratio and capacity factor). In this paper, the key factor of torque converter, which affect vehicle performance, are explored by using Taguchi method. Moreover, general sensitivity analysis method is compared with Taguchi's experiment.

A Response Estimation for Vehicle Vibration of Gas Pipeline (가스 파이프라인의 차량진동 응답 예측)

  • 박선준;박연수;강성후
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.1
    • /
    • pp.40-49
    • /
    • 2004
  • In this paper, vibration response of aerial gas pipeline due to vehicle loads was quantitatively estimated through experiment and analysis in open cut construction site. The vehicle vibration of various construction machines causes serious effect to the aerial gas pipeline. The new vibration prediction equations presented in this study can estimate the vibration velocity response of the aerial gas pipeline. In the nitration prediction equations, the vehicle′s weight and traveling velocity, which are the sources of vibration, are combined into the term called, "scaled weight" Methods to reduce vibration were proposed in case the vibration velocity response of the gas pipeline exceeded the vibration criterion, using the vibration prediction equations presented in this study. One was to limit the vehicle′s traveling velocity and the other to install the isolation equipment. Both methods can be estimated quantitatively.