• Title/Summary/Keyword: Vehicle detection and tracking

Search Result 150, Processing Time 0.023 seconds

Development of a Real Time Video Image Processing System for Vehicle Tracking (실시간 영상처리를 이용한 개별차량 추적시스템 개발)

  • Oh, Ju-Taek;Min, Joon-Young
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.19-31
    • /
    • 2008
  • Video image processing systems(VIPS) offer numerous benefits to transportation models and applications, due to their ability to monitor traffic in real time. VIPS based on wide-area detection, i.e., multi-lane surveillance algorithm provide traffic parameters with single camera such as flow and velocity, as well as occupancy and density. However, most current commercial VIPS utilize a tripwire detection algorithm that examines image intensity changes in the detection regions to indicate vehicle presence and passage, i.e., they do not identify individual vehicles as unique targets. If VIPS are developed to track individual vehicles and thus trace vehicle trajectories, many existing transportation models will benefit from more detailed information of individual vehicles. Furthermore, additional information obtained from the vehicle trajectories will improve incident detection by identifying lane change maneuvers and acceleration/deceleration patterns. The objective of this research was to relate traffic safety to VIPS tracking and this paper has developed a computer vision system of monitoring individual vehicle trajectories based on image processing, and offer the detailed information, for example, volumes, speed, and occupancy rate as well as traffic information via tripwire image detectors. Also the developed system has been verified by comparing with commercial VIP detectors.

  • PDF

Development of a Vehicle Tracking Algorithm using Automatic Detection Line Calculation (검지라인 자동계산을 이용한 차량추적 알고리즘 개발)

  • Oh, Ju-Taek;Min, Joon-Young;Hur, Byung-Do;Kim, Myung-Seob
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.265-273
    • /
    • 2008
  • Video Image Processing (VIP) for traffic surveillance has been used not only to gather traffic information, but also to detect traffic conflicts and incident conditions. This paper presents a system development of gathering traffic information and conflict detection based on automatic calculation of pixel length within the detection zone on a Video Detection System (VDS). This algorithm improves the accuracy of traffic information using the automatic detailed line segmentsin the detection zone. This system also can be applied for all types of intersections. The experiments have been conducted with CCTV images, installed at a Bundang intersection, and verified through comparison with a commercial VDS product.

IMAGE PROCESSING TECHNIQUES FOR LANE-RELATED INFORMATION EXTRACTION AND MULTI-VEHICLE DETECTION IN INTELLIGENT HIGHWAY VEHICLES

  • Wu, Y.J.;Lian, F.L.;Huang, C.P.;Chang, T.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.513-520
    • /
    • 2007
  • In this paper, we propose an approach to identify the driving environment for intelligent highway vehicles by means of image processing and computer vision techniques. The proposed approach mainly consists of two consecutive computational steps. The first step is the lane marking detection, which is used to identify the location of the host vehicle and road geometry. In this step, related standard image processing techniques are adapted for lane-related information. In the second step, by using the output from the first step, a four-stage algorithm for vehicle detection is proposed to provide information on the relative position and speed between the host vehicle and each preceding vehicle. The proposed approach has been validated in several real-world scenarios. Herein, experimental results indicate low false alarm and low false dismissal and have demonstrated the robustness of the proposed detection approach.

Detection of Dumping Position Using Vehicle Tracking (차량 트레킹을 통한 매립위치의 검출)

  • Lee, Dong-Gyu;Lee, Young-Dae;Cho, Sung-Yun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.07a
    • /
    • pp.433-434
    • /
    • 2012
  • In this paper, we developed the algorithm which tracking the vehicle and deciding the moment of dumping in landfills. We first trace the position of vehicle using the difference image between current image and background image and then we decide the stop point from the shape of vehicle route and detect the dumping point by comparing the dumping image with the image that vehicle is stopping.

  • PDF

A Vehicle Detection System Robust to Environmental Changes for Preventing Crime (환경 변화에 강인한 방범용 차량 검지 시스템)

  • Bae, Sung-Ho;Hong, Jun-Eui
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.983-990
    • /
    • 2010
  • The image processing technique is very sensitive to the variation of external environment, so it tends to lose a lot of accuracy when the external environment changes rapidly. In this paper, we propose a vehicle detecting and tracking system for crime prevention suitable for an external environments with various changes using the image processing technique. Because the vehicle camera detector for crime prevention extracts and tracks the vehicle within one lane, it is important to classify a characteristic region rather than the contour of a vehicle. The proposed system detects the entrance of the vehicle using optical flow and tracks the vehicle by classifying the headlights, the bonnet, the front-window and the roof area of the vehicle. Experimental results show that the proposed method is robust to the environmental changes such as type, speed and time of a vehicle.

Lane Violation Detection System Using Feature Tracking (특징점 추적을 이용한 끼어들기 위반차량 검지 시스템)

  • Lee, Hee-Sin;Lee, Joon-Whoan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.2
    • /
    • pp.36-44
    • /
    • 2009
  • In this paper, we suggest a system of detecting a vehicle with lane violation, which can detect the vehicle with lane violation, by using the feature point tracking. The whole algorithm in the suggested system of detecting a vehicle with lane violation is composed of three stages such as feature extraction, register and tracking in feature for the tracking-targeted vehicle, and detecting a vehicle with lane violation. In the stage of feature extraction, the feature is extracted from the inputted image by sing the feature-extraction algorithm available for the real-time processing. The extracted features are again selected the racking-targeted feature. The registered feature is tracked by using NCC(normalized cross correlation). Finally, whether or not lane violation is finally detected by using information on the tracked features. As a result of experimenting the suggested system by using the acquired image in the section with a ban on intervention, the excellent performance was shown with 99.09% for positive recognition ratio and 0.9% for error ratio. The fast processing speed could be obtained in 34.48 frames per second available for real-time processing.

  • PDF

A Method of Lane Marker Detection Robust to Environmental Variation Using Lane Tracking (차선 추적을 이용한 환경변화에 강인한 차선 검출 방법)

  • Lee, Jihye;Yi, Kang
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1396-1406
    • /
    • 2018
  • Lane detection is a key function in developing autonomous vehicle technology. In this paper, we propose a lane marker detection algorithm robust to environmental variation targeting low cost embedded computing devices. The proposed algorithm consists of two phases: initialization phase which is slow but has relatively higher accuracy; and the tracking phase which is fast and has the reliable performance in a limited condition. The initialization phase detects lane markers using a set of filters utilizing the various features of lane markers. The tracking phase uses Kalman filter to accelerate the lane marker detection processing. In a tracking phase, we measure the reliability of the detection results and switch it to initialization phase if the confidence level becomes below a threshold. By combining the initialization and tracking phases we achieved high accuracy and acceptable computing speed even under a low cost computing resources in which we cannot use the computing intensive algorithm such as deep learning approach. Experimental results show that the detection accuracy is about 95% on average and the processing speed is about 20 frames per second with Raspberry Pi 3 which is low cost device.

Multiple Object Detection and Tracking System robust to various Environment (환경변화에 강인한 다중 객체 탐지 및 추적 시스템)

  • Lee, Wu-Ju;Lee, Bae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.88-94
    • /
    • 2009
  • This paper proposes real time object detection and tracking algorithm that can be applied to security and supervisory system field. A proposed system is devide into object detection phase and object tracking phase. In object detection, we suggest Adaptive background subtraction method and Adaptive block based model which are advanced motion detecting methods to detect exact object motions. In object tracking, we design a multiple vehicle tracking system based on Kalman filtering. As a result of experiment, motion of moving object can be estimated. the result of tracking multipul object was not lost and object was tracked correctly. Also, we obtained improved result from long range detection and tracking.

Development of a Vision Sensor-based Vehicle Detection System (스테레오 비전센서를 이용한 선행차량 감지 시스템의 개발)

  • Hwang, Jun-Yeon;Hong, Dae-Gun;Huh, Kun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.134-140
    • /
    • 2008
  • Preceding vehicle detection is a crucial issue for driver assistance system as well as for autonomous vehicle guidance function and it has to be performed with high reliability to avoid any potential collision. The vision-based preceded vehicle detection systems are regarded promising for this purpose because they require little infrastructure on a highway. However, the feasibility of these systems in passenger car requires accurate and robust sensing performance. In this paper, an preceded vehicle detection system is developed using stereo vision sensors. This system utilizes feature matching, epipoplar constraint and feature aggregation in order to robustly detect the initial corresponding pairs. After the initial detection, the system executes the tracking algorithm for the preceded vehicles including a leading vehicle. Then, the position parameters of the preceded vehicles or leading vehicles can be obtained. The proposed preceded vehicle detection system is implemented on a passenger car and its performances is verified experimentally.

Radar and Vision Sensor Fusion for Primary Vehicle Detection (레이더와 비전센서 융합을 통한 전방 차량 인식 알고리즘 개발)

  • Yang, Seung-Han;Song, Bong-Sob;Um, Jae-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.639-645
    • /
    • 2010
  • This paper presents the sensor fusion algorithm that recognizes a primary vehicle by fusing radar and monocular vision data. In general, most of commercial radars may lose tracking of the primary vehicle, i.e., the closest preceding vehicle in the same lane, when it stops or goes with other preceding vehicles in the adjacent lane with similar velocity and range. In order to improve the performance degradation of radar, vehicle detection information from vision sensor and path prediction predicted by ego vehicle sensors will be combined for target classification. Then, the target classification will work with probabilistic association filters to track a primary vehicle. Finally the performance of the proposed sensor fusion algorithm is validated using field test data on highway.