• Title/Summary/Keyword: Vehicle black box

Search Result 95, Processing Time 0.032 seconds

A Study on the Fire Risk of Black Box Wiring in Motor Vehicle (자동차의 블랙박스 와이어링 화재 위험성에 관한 연구)

  • Kang, Sin-Dong;Kim, Ju-Hee;Choi, Jun-Pyo;Kim, Jae-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.22-28
    • /
    • 2017
  • According to the National Fire Data System (NFDS), more than 5,000 vehicle fires have occurred every year for the last 10 years. Vehicle fires are primarily caused by mechanical (breaking system and engine), electrical (wiring and battery), and chemical (oil and fuel gas leakage) problems. The electrical factor has increased with the installation of driver convenience equipment. For example, today, the black box is widely used to provide video data recording of motor vehicle accidents. The black box consists of a front camera, rear camera, and wires. The black box wires are directly connected to the junction box or fuse box from the start battery that operates to provide normal on power supplying for engine stop. It is extremely dangerous when the wires short circuit due to insulation aging, mechanical and electrical stress, etc. In this study, the black box wiring fire risk have been analyzed and investigated when the steady state and abnormal operations, and under the following conditions: wiring arrangements with a high temperature condition, insulation aging, poor contact, and short circuits. The results showed that black box wiring short circuits had a higher fire risk than the other fire hazard elements. To prevent fire hazards caused by black box wiring, the black boxes must be installed by qualified service personnel. Do not modify the wiring, remove the fuse and secure the wiring using cable ties or insulation tape.

Development of Vehicle Oriented Black Box System Based on U-Healthcare and Human-Free Guard Functions

  • Lee, Dong-Myung
    • Journal of Engineering Education Research
    • /
    • v.13 no.5
    • /
    • pp.36-40
    • /
    • 2010
  • The vehicle oriented block box system based on the u-healthcare and the human-free guard functions is developed in this paper. We also suggested the design philosophies, ideas, and analyzed the performance of the suggested system. The developed vehicle oriented black box system has some characteristics such as; 1) detects the dangerous situation by ultrasonic sensor in advance, and stores the situation information of the neighborhood of the vehicle to the imbedded SD memory card if the dangerous situation may be occurred in the parked vehicle; 2) detects the present location and speed information of the vehicle by GPS receiver and 3-axes acceleration sensor, and stores the information to the SD memory card periodically if the vehicle is running; 3) measures the dioxide carbon in the vehicle inside using $CO_2$ sensor, and forces the ventilation motor of the vehicle to operate and maintains the driver's health if the measured level is more than standard health requirements; 4) provides the stored vehicle's operating information to the driver by GUI (Graphical User Interface) based touch LCD monitor.

  • PDF

Designed rear sensing black-box system using Kinect (Kinect를 이용한 후방 감지 블랙박스 시스템 설계)

  • Kim, Gyu-Hyun;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.290-293
    • /
    • 2013
  • Due to vehicle personal injury accident does not, and to analyze the cause and prevention of a variety of devices and technologies are coming out. Among other things, representative of the black box, and rear camera. Despite these advances in technology, and vehicle human injuries continue to occur. The reason for this is that the children, the negligence of the driver or the vehicle is in reverse when a person suddenly passed the back of the vehicle, or the rear of the existing detection system is properly detected was unable to. Therefore, In this paper, we want to design a black box to reveal the cause of the accident, using Kinect to prevent accidents, rear-view camera and rear integrated black box system.

  • PDF

Compensation of Errors on Car Black Box Records and Trajectory Reconstruction Analysis (자동차 블랙박스 기록 오차 보정과 경로 재구성 해석)

  • Yang, Kyoung-Soo;Lee, Won-Hee;Han, In-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.182-190
    • /
    • 2004
  • This paper presents reconstruction analysis of vehicle trajectory using records of a developed black box, and results of validation tests. For reconstruction of vehicle trajectory, the black box records the longitudinal and lateral accelerations and yaw-rate of vehicle during a pre-defined time period before and after the accident. One 2-axis accelerometer is used for measuring accelerations, and one vibrating structure type gyroscope is used for measuring yaw-rate of vehicle. The vehicle's planar trajectory can be reconstructed by integrating twice accelerations along longitudinal and lateral directions with yaw-rate values. However, there may be many kinds of errors in sensor measurements. The causes of errors are as follows: mis-alignment, low frequency offset drift, high frequency noise, and projecting 3-dimensional motion into 2-dimensional motion. Therefore, some procedures are taken for error compensation. In order to evaluate the reliability and the accuracy of trajectory reconstruction results, the black box was mounted on a passenger car. The vehicle was driven and tested along various specified lanes. Through the tests, the accuracy and usefulness of the reconstruction analysis have been validated.

Integrated Management System for Vehicle Black Box Video Using Mobile Cloud (모바일 클라우드를 이용한 차량용 블랙박스 영상 통합관리 시스템)

  • Jeong, Seong-Woo;Park, Yoo-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2352-2358
    • /
    • 2013
  • In this paper, we designed and implemented black box terminal with wireless communication function and cloud server for more efficient usage of black box video. Our system can store and manage all vehicle black box videos so public institutions can select videos with various conditions such as object, time-based and location based like integrated CCTV management system.

Intelligent Black Box with Rotating Screen using Infrared Distance Sensor (적외선 거리 센서를 이용한 지능형 화면회전 블랙박스)

  • Rhee, Eugene
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.168-173
    • /
    • 2018
  • To overcome the problems of the existing black box which is exposed to the risk of blind spots in the imaging of a fixed front and rear views of an object, this paper suggests a new intelligent black box that can detect and shoot side views of an object. This paper proposes an algorithm of the intelligent black box with a rotating function in order to compensate for the side blind spot of the vehicle. This intelligent black box with rotating screen adopts the infrared distance sensor to sense an object which approaches to the vehicle and rotates automatically towards the object.

Development of an Automobile Black Box for Reconstruction Analysis of Collision Accidents (충돌사고 재구성 해석을 위한 차량 블랙박스의 개발)

  • 이원희;한인환
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.205-214
    • /
    • 2004
  • This paper presents design concepts, specifications and performances of a newly developed Black Box, the reconstruction analysis tool with the records, and results of validation tests. The Black Box can detect crash accidents automatically, and record the vehicle's motion and driver's maneuvers during a pre-defined time period before and after the accident. The items of the Black Box included the acceleration, yaw-rate, vehicle speed, engine RPM, braking application, steering and several digital inputs for recording driver's maneuvers. To detect the accident-related-crash, it is important to understand characteristics of the crash signal, which are much different from those of normal driving. Therefore, analytical considerations should be taken in designing pre-filtering circuits and selecting appropriate parameters for identifying crash accidents. And, it is necessary to select proper combination of motion sensors and design proper pre-filtering circuits in order to describe the vehicle's motion. The analysis algorithms were developed and implemented which can perform accurate detection of crash accidents, simulating pre-crash trajectories, and calculating parameters for reconstruction analysis of crash accidents. The developed Black Box was installed on passenger cars and several types of validation tests were conducted. Through the tests, the accuracy of the recorded data and usefulness of the analysis tool for reconstruction have been validated.

Design Android-based image processing system using the Around-View (안드로이드 기반 영상처리를 이용한 Around-View 시스템 설계)

  • Kim, Gyu-Hyun;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.421-424
    • /
    • 2014
  • Currently, car black box, and CCTV products, such as image processing are prevalent on the market giving convenience to users.In particular, the black box of the driver driving a vehicle accident that occurred at the time to help identify the cause of the accident is gaining. Black box, the front or rear of the vehicle can check the image only. Because of the angle of view of the driver's vision or the black box can not determine a non-scene. In order to solve this problem by a more advanced system, the black box AVM (Around-View Monitoring) systems have been developed. AVM system to the vehicle's top-view images obtained before and after, left and right of the image, ie, $360^{\circ}$ image of the vehicle can be secured. AVM system must be installed on the vehicle, a desktop that you can acquire images Cling conditions. In this paper, we propose an Android-based tablet using the AVM system of the vehicle can achieve a $360^{\circ}$ image you want to design the system.

  • PDF

A implement Android OS-based black-box system in the vehicle (안드로이드 OS 기반의 차량용 블랙박스 시스템 구현)

  • Song, Min-Seob;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.483-486
    • /
    • 2011
  • Recently, large and small vehicle accidents due to human life and property due to loss of function similar to that used on the plane with a black box mounted on the vehicle by the driver of the vehicle in order to analyze the cause of the accident vehicle you are using a black box. The black box used in the existing operating system, unlike the Android OS portability is good compared to other OS support an open platform for the development of additional costs or proven, which includes many libraries need to use any external libraries there are no advantages. In addition, the existing black box on the incident can not be sent automatically to report an accident notification has a problem. In this paper, another advantage of the OS used in a black box with an Android-based acceleration sensor on the test board GPS module and smart phones using the information, and incident detection capability to send a message to the specified number of black boxes with was implemented.

  • PDF

Integrity Verification in Vehicle Black Box Video Files with Hashing Method (차량용 블랙박스 영상파일의 무결성 검증에 해시함수 이용 방법)

  • Choi, Jin-young;Chang, Nam Su
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.241-249
    • /
    • 2017
  • Recently, as a vehicle black box device has propagated, it has been increasingly used as a legal proof and there are the needs to verify an integrity of the video data. However, since the black box classified as the embedded system has a small capacity and low processing speed, there are limitations to the storage of video files and the integrity verification processing. In this paper, we propose a novel method for video files integrity in the black box environment with limited resources by using lightweight hash function LSH and the security of HMAC. We also present the test results of CPU idle rate at integrity verification in vehicle black box device by implementing this method, and verify the effectiveness and practicality of the proposed method.