• Title/Summary/Keyword: Vehicle Traffic

Search Result 2,222, Processing Time 0.032 seconds

Weigh-in-Motion load effects and statistical approaches for development of live load factors

  • Yanik, Arcan;Higgins, Christopher
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.1-15
    • /
    • 2020
  • The aim of this paper is to simply present live load factor calculation methodology formulation with the addition of a simple new future load projection procedure to previously proposed two methods. For this purpose, Oregon Weigh-in-Motion (WIM) data were used to calculate live load factors by using WIM data. These factors were calculated with two different approaches and by presenting new simple modifications in these methods. A very simple future load projection method is presented in this paper. Using four different WIM sites with different average daily truck traffic (ADTT) volume, and all year data, live load factors were obtained. The live load factors, were proposed as a function of ADTT. ADTT values of these sites correspond to three different levels which are approximately ADTT= 5,000, ADTT = 1,500 and ADTT ≤ 500 cases. WIM data for a full year were used from each site in the calibration procedure. Load effects were projected into the future for the different span lengths considering five-year evaluation period and seventy-five-years design life. The live load factor for ADTT=5,000, AASHTO HS20 loading case and five-year evaluation period was obtained as 1.8. In the second approach, the methodology established in the Manual for Bridge Evaluation (MBE) was used to calibrate the live load factors. It was obtained that the calculated live load factors were smaller than those in the MBE specifications, and smaller than those used in the initial calibration which did not convert to the gross vehicle weight (GVW) into truck type 3S2 defined by AASHTO equivalents.

A Study on Condition Assessment of the General National Road Bridge Deck (일반국도상 교량 바닥판의 상태 현황분석 연구)

  • Oh, Kwang Chin;Lee, Jun Gu;Shin, Ju Yeoul;Chang, Buhm Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.93-101
    • /
    • 2012
  • Bridge deck has a role in a comfortable and safe passage of vehicles. At the same time, it preserves upper structure against the abrasion and shearing due to impact of traffic loads in bridges or has a role to protect the plate from off adverse effect of climatic process as rain, chemicals. Currently, the total number of inspected bridges is 6,248 in the general national road and to maintain effectively, Introduction of GPR system mounted in the vehicle has been considered. In this research, the comparison and analysis of bridge deck condition on general national road has been performed with major variations of superstructure type, span lengths, located region and ages by using 'the current status of road bridge and tunnel' that is provided by MLTM(Ministry of Land, Transport and Maritime Affairs). As a result, Condition assessment grade, superstructure type, age and length were derived as a major factor to determine priority for the condition assessment.

A Study on the New Active Tilt Control Systems for Improving Passenger′s Feeling of Ground Vehicles in Urban Area (도시형 지상 차량의 승차감 향상을 위한 새로운 능동형 기울임 제어 시스템에 관한 연구)

  • 소상균;변기식
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.103-110
    • /
    • 2001
  • To reduce the traffic congestion and parking problems in urban areas tall and narrow vehicles have interested as a means to increase the utilization of existing freeways and parking facilities. The stability problem for those narrow vehicles which might be caused can be reduced by tilting the body toward the inside of the turn. The Direct Tilt Control(DTC) system and the Steering Tilt Control(STC) system have been proposed for those narrow vehicles. In this paper, as one of the performance improvement for that kind of vehicle a new control system to use the merits of both the DTC system and the STC system is proposed. Because two different control systems fight each other, the switching control scheme is applied as a means to prevent fighting. Also, the method in order to achieve the smoothly changed control system when the system is switched from the DTC to the STC or from the STC to the DTC, the appropriate type of control gain is designed.

  • PDF

Development of Empirical Model for the Air Pollutant Dispersion in Urban Street Canyons Using Wind Tunnel Test (풍동실험을 이용한 도시거리협곡에서의 대기오염확산모델의 개발)

  • Park, Seong-Kyu;Kim, Shin-Do;Lee, Hee-Kwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.852-858
    • /
    • 2005
  • Modeling techniques for air quality are useful tools in air quality management. Especially, the air quality in urban area is significantly influenced by local surroundings such as buildings and traffic. When considering the air quality in a street canyon, which is usually filmed by a series of consecutive buildings and a street, currently available air dispersion model have a number of limitations to predict the air quality properly. In this study, it is aimed to propose an empirical model for the air quality in urban street canyons. A series of wind tunnel tests, followed by statistical analysis, were conducted. In conclusion, it is found that a wide street canyon and a perpendicular external wind to the street canyon are beneficial to achieve an enhanced air quality in street canyon environment. The model prediction using the proposed model also shows reliable correlations to the wind tunnel test results.

Emission Characteristics of a Passing Two-stroke Scooter using at a Roadside Measurement (도로변 측정을 이용한 2행정 스쿠터의 대기오염물질 배출특성 연구)

  • Woo, Dae-Kwang;Lee, Seung-Bok;Bae, Gwi-Nam;Lim, Cheol-Soo;Kim, Tae-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.663-671
    • /
    • 2011
  • Although a scooter is a convenient transportation means for a short distance traveling with a light package in the congested urban center, it might be one of the significant sources of air pollutants to which many people can easily be exposed during its passing-by. In this paper, we measured concentrations of gases and particles emitted from a scooter at roadside with no other traffic. To understand the characteristics of scooter emissions with respect to driving speed (idling, 30 km/h) at the roadside, total particle number concentration, particle size distribution, average surface area of particles deposited in the alveolar region, and concentrations of black carbon, CO, and $NO_x$ were measured. The concentrations of the particle number, surface area of deposited particles, CO, and $NO_x$ were highly fluctuated in the scooter's idling condition. The trends of particle number concentration, CO, and $NO_x$ generation were similar to one another. When the scooter started to move, all of $NO_x$, CO and particle number concentrations increased and after it passed by at the speed of 30 km/h, the concentration peaks of the particles and gases appeared at the same time. Unimodal size distribution with ~70 and ~93 nm mode diameters was observed for the idling and cruising condition, respectively. From this work, we found that emission from a passing vehicle could be characterized using a roadside monitoring technique.

Analysis of Braking Response Time for Driving Take Based on Tri-axial Accelerometer

  • Shin, Hwa-Kyung;Lee, Ho-Cheol
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.6
    • /
    • pp.59-63
    • /
    • 2010
  • Purpose: Driving a car is an essential component of daily life. For safe driving, each driver must perceive sensory information and respond rapidly and accurately. Brake response time (BRT) is a particularly important factor in the total stopping distance of a vehicle, and therefore is an important factor in traffic accident prevention research. The purpose of the current study was (1) to compare accelerometer. BRTs analyzed by three different methods and (2) to investigate possible correlations between accelerometer-BRTs and foot switch-BRTs, which are measured method using a foot switch. Methods: Eighteen healthy subjects participated in this study. BRT was measured with either a tri-axial accelerometer or a footswitch. BRT with a tri-axial accelerometer was analyzed using three methods: maximum acceleration time, geometrical center, and center of maximum and minimum acceleration values. Results: Both foot switch-BRTs and accelerometer-BRTs were delayed. ANOVA for accelerometer BRTs yielded significant main effects for axis and analysis, while the interaction effect between axis and analysis was not significant. Calculating the Pearson correlation between accelerometer-BRT and foot switch-BRT, we found that maximum acceleration time and center of maximum and minimum acceleration values were significantly correlated with foot switch-BRT (p<0.05). The X axis of the geometrical center was significantly correlated with foot switch-BRTs (p<0.05), but Y and Z axes were not (p>0.05). Conclusion: These findings suggest that the maximum acceleration time and the center of maximum and minimum acceleration value are significantly correlated with foot switch-BRTs.

Evaluation on Patching Materials for Asphalt Pavement (아스팔트 포장도로의 응급보수재료 평가에 관한 연구)

  • Shim, Jae-Pill;Jin, Jung-Hoon;Park, Tea-Soon;Lee, Jae-Sik
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.59-67
    • /
    • 2012
  • This study presents the evaluation of the patching materials that are used to repair the distress of asphalt pavement. Four kinds of patching materials currently used in practice were tested in both laboratory and field. The laboratory tests included the dry and soaked Marshall stability test, indirect tensile test, wheel tracking test and adhesive strength between the asphalt pavement and the repairing material was tested as a performance test. The field study was conducted using the slab samples placed on the location of vehicle tire passing and the performance of the repairing materials were investigated as passing the traffic load. The result of the laboratory tests were satisfied with the current design criteria and material standard except for water-immersion stability. Type C patching material showed the highest adhesive shear strength among the patching materials tested. However, the mature distress, such as rutting and stripping were monitored after construction in 10 days. It was found that performance of patching material is lack of quality behavior when they were applied in the field and required to develop and applu to prevent the mature distress of the current patching materials.

Measuring of Effectiveness of Tracking Based Accident Detection Algorithm Using Gaussian Mixture Model (가우시안 배경혼합모델을 이용한 Tracking기반 사고검지 알고리즘의 적용 및 평가)

  • Oh, Ju-Taek;Min, Jun-Young
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.77-85
    • /
    • 2012
  • Most of Automatic Accident Detection Algorithm has a problem of detecting an accident as traffic congestion. Actually, center's managers deal with accidents depend on watching CCTV or accident report by drivers even though they run the Automatic Accident Detection system. It is because of the system's detecting errors such as detecting non-accidents as accidents, and it makes decreasing in the system's overall reliability. It means that Automatic Accident Detection Algorithm should not only have high detection probability but also have low false alarm probability, and it has to detect accurate accident spot. The study tries to verify and evaluate the effectiveness of using Gaussian Mixture Model and individual vehicle tracking to adapt Accident Detection Algorithm to Center Management System by measuring accident detection probability and false alarm probability's frequency in the real accident.

Analysis of Priority Investments for Preventing Roadside Slope Failures (도로비탈면 투자우선순위 결정에 관한 연구)

  • Kim, Seung-Hyun;Kim, Hong-Gyun;Oak, Young-Suk;Lee, Jong-Hyun;Koo, Ho-Bon
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.257-269
    • /
    • 2013
  • Prevention plans for landslide and slope disasters should be appropriate for a country's budget when considering a systematic investment plan. The systematic management of slopes adjacent to national highways should incorporate reasonable investment risk and the expected degree of damage should be calculated by considering the investment priorities. In terms of priority of investment, the major factors used to determine the degree of hazard are gradient, soil characteristics, RMR (Rock Mass Rating), stability interpretation, type of discontinuities, and history of collapse, among others. The likely consequences of slope failure can be determined by considering traffic volume, the number of lanes, and average vehicle risk. We performed such calculations regarding the priority of investment and performed a regression analysis for 392 slopes located in Yeongseo region, Gangwon province. The calculation results show that collapsed slopes have a higher priority for investment, as do slopes with a high proportion of dangerous sections and locations in valleys.

Evaluation of Sidewalk Level of Service Considering Land Use Patterns (용도지역 특성을 고려한 보도 설계 서비스수준 평가방안)

  • Kim, Yong-Seok;Choe, Jae-Seong
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.2 s.95
    • /
    • pp.83-93
    • /
    • 2007
  • Pedestrians and vehicle users should be treated with equal importance in urban street design. However, current street design suggests that the design criteria for sidewalks is based on the functional hierarchy of the vehicles, therefore it is necessary to develop sidewalk design standards that give more weight to pedestrians rather than vehicles. For this, this study suggests that the level of service of pedestrians should be considered in the process of designing sidewalks. Currently, level of service (LOS) criteria for pedestrians in the Korean Highway Capacity Manual are based on pedestrian volume, but the volume of pedestrians is seldomly estimated in practice. So, the current LOS criteria has limitations in terms of practical use. Also, the study assumes that the pedestrian flow rate is hardly the dominant factor that could affect the LOS of pedestrians at most urban sidewalks. In this context, the study considers a new LOS for sidewalk design based on the comfort of pedestrians while passing pedestrians coming from the opposite direction. Then the study attempts to link the new LOS criteria to the land use patterns using data of pedestrian traffic characteristics acquired from the field. In addition to this, the scope in which the suggested criteria can be applied is suggested.