• Title/Summary/Keyword: Vehicle Test

Search Result 3,975, Processing Time 0.036 seconds

Finite Element Analysis on the Strength Safety of a Fuel Tank for Highly Compressed Gas Vehicle (수술실 내의 아산화질소($N_2O$) 노출평가)

  • Baek, Jong-Bae;Uhm, Min-Yong
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.34-38
    • /
    • 2009
  • Nitrous oxide, which is used as an anesthetic gas, has been shown to be a chronic health hazard. It is necessary to monitor and control the nitrous oxide exposure of the operating theaters staff. In this study, N2O exposure level of the operating nurses is assessed with a GC-ECD. The nitrous oxide gas is collected on a molecular sieve 5A contained in a glass tube and desorbed for 12 hours at $100^{\circ}C$ in heating block. As a result of the test using GC-ECD, calibration curve's $R^2$ of $N_2O$ is 0.9992, LOD is $0.96{\mu}g$/injection, LOQ is $3.21{\mu}g$/injection, desorption efficiency is 94.78 4.50% in average and break through is within 10% compared with the concentration. The average concentration before operation is 5.12ppm and it is 42.3ppm during operation. There are a significant difference showing that the P value is lower than 0.05. Assessing exposure level to nitrous oxide based on nurses' working positions, the exposure levels do not show significant difference( P>0.005). And $N_2O$ in active sampling method is higher than passive sampling method(P<0.05).

  • PDF

Influence of Welding Parameters on Macrostructure and Mechanical Properties of Friction-Stir-Spot-Welded 5454-O Aluminum Alloy Sheets (마찰교반점접합한 5454-O 알루미늄합금 판재의 접합부 거시조직 및 기계적 특성에 미치는 접합인자의 영향)

  • Choi, Won-Ho;Kwon, Yong-Jai;Yoon, Sung-Ook;Kang, Myoung-Soo;Lim, Chang-Yong;Seo, Jong-Dock;Hong, Sung-Tae;Park, Dong-Hwan;Lee, Kwang-Hak
    • Journal of Welding and Joining
    • /
    • v.29 no.6
    • /
    • pp.56-64
    • /
    • 2011
  • Friction stir spot welding between 5454 aluminum alloy sheets with the different thicknesses of 1.4 and 1.0 mm was performed. In the welding process, the tool for welding was rotated ranging from 500 to 2500, and plunged to the depth of 1.8 mm under a constant tool plunge speed of 100 mm/min. And then, the rotating tool was maintained at the plunge depth during the dwell time ranging from 0 to 7 sec. The pull-out speed of the rotating tool was 100 mm/min. The increase of tool rotation speed resulted in the change of the macrostructure of friction-stir-spot-welded zone, especially the geometry of welding interface. The results of the tensile shear test showed that the total displacement and toughness of the welds were increased with the increase of the tool rotation speed, although the maximum tensile shear load was decreased. However, the change in the dwell time at the plunge depth of the tool did not produce the remarkable variation in the macrostructure and mechanical properties of the welds. In all cases, the average hardness in friction-stir-spot-welded zone was higher than that of the base metal zone. By the friction stir spot welding technique, the welds with the excellent mechanical properties than the mechanically-clinched joints could be obtained.

Investigations on Public Perception of Science Articles in the Mass Media and Understanding of Scientific Terms Used in High Frequency in Science Articles (대중매체의 과학기사에 대한 대중들의 인식과 고빈도로 사용되는 과학용어에 대한 이해도 조사)

  • Yun, Eunjeong;Park, Yunebae
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.4
    • /
    • pp.535-544
    • /
    • 2019
  • In order to find out whether the traditional mass media in our society are sufficiently functioning as a vehicle of providing scientific information to the public outside the school education, public perception of science articles in mass media and scientific terms used in high frequency in science articles have been examined. To investigate the public perception on science articles, a questionnaire was constructed about the usefulness, importance, access frequency, and understanding of science articles. The questionnaires were conducted in areas with high flow populations such as train stations or subway stations. A total of 425 responses were used for analysis. In order to extract high frequency scientific terms used in science articles, two television companies and two newspapers were designated as target media, and their texts on science articles reported over the last 17 years were collected to investigate the frequency of scientific terms used. Based on the frequency, we conducted the self-report comprehension test for the top 100 scientific terms. The results of this study show that the public in our society has relatively high perception of the importance and usefulness of science articles, however, reading and understanding the articles seems to be somewhat difficult. In addition, the scientific terminology used in science articles has a high degree of comprehension for those of higher education, natural sciences majors, and men. In addition, scientific terms with high understanding degree were characterized according to gender, age, educational background, and field of major.

Analysis Model for Design Based on Stiffness Requirement of Direct Drive Electromechanical Actuator (직구동 전기기계식 구동기의 강성요구규격에 기반한 설계용 해석모델)

  • Oh, Sang Gwan;Lee, Hee Joong;Park, Hyun Jong;Oh, Dongho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.738-746
    • /
    • 2019
  • Instead of hydraulic actuation systems, an electromechanical actuation system is more efficient in terms of weight, cost, and test evaluation in the thrust vector control of the 7-ton gimbal engine used in the Korea Space Launch Vehicle-II(KSLV-II) $3^{rd}$ stage. The electromechanical actuator is a kind of servo actuator with position feedback and uses a BLDC motor that can operate at high vacuum. In the case of the gimballed rocket engine, a synthetic resonance phenomenon may occur due to a combination of a vibration mode of the actuator itself, a bending mode of the launcher structure, and an inertial load of the gimbals engine. When the synthetic resonance occurs, the control of the rocket attitude becomes unstable. Therefore, the requirements for the stiffness have been applied in consideration of the gimbal engine characteristics, the support structure, and the actuating system. For the 7-ton gimbal engine of the KSLV-II $3^{rd}$ stage, the stiffness requirement of the actuation system is $3.94{\times}10^7N/m$, and the direct drive type electromechanical actuator is designed to satisfy this requirement. In this paper, an equivalent stiffness analysis model of a direct drive electromechanical actuator designed based on the stiffness requirements is proposed and verified by experimental results.

Bacopa monnieri extract improves novel object recognition, cell proliferation, neuroblast differentiation, brain-derived neurotrophic factor, and phosphorylation of cAMP response element-binding protein in the dentate gyrus

  • Kwon, Hyun Jung;Jung, Hyo Young;Hahn, Kyu Ri;Kim, Woosuk;Kim, Jong Whi;Yoo, Dae Young;Yoon, Yeo Sung;Hwang, In Koo;Kim, Dae Won
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.239-247
    • /
    • 2018
  • Bacopa monnieri is a medicinal plant with a long history of use in Ayurveda, especially in the treatment of poor memory and cognitive deficits. In the present study, we hypothesized that Bacopa monnieri extract (BME) can improve memory via increased cell proliferation and neuroblast differentiation in the dentate gyrus. BME was administered to 7-week-old mice once a day for 4 weeks and a novel object recognition memory test was performed. Thereafter, the mice were euthanized followed by immunohistochemistry analysis for Ki67, doublecortin (DCX), and phosphorylated cAMP response element-binding protein (CREB), and western blot analysis of brain-derived neurotrophic factor (BDNF). BME-treated mice showed moderate increases in the exploration of new objects when compared with that of familiar objects, leading to a significant higher discrimination index compared with vehicle-treated mice. Ki67 and DCX immunohistochemistry showed a facilitation of cell proliferation and neuroblast differentiation following the administration of BME in the dentate gyrus. In addition, administration of BME significantly elevated the BDNF protein expression in the hippocampal dentate gyrus, and increased CREB phosphorylation in the dentate gyrus. These data suggest that BME improves novel object recognition by increasing the cell proliferation and neuroblast differentiation in the dentate gyrus, and this may be closely related to elevated levels of BDNF and CREB phosphorylation in the dentate gyrus.

A Study on the Measures for Detection Error from the Displacement Distortion of the RADAR Waveform (레이더 전파의 왜곡현상에서 오는 탐지 오류 저감 방안 연구)

  • Kim, Jin Hieu;Kim, ChangEun;Lee, Yong-Soo
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.2 no.1
    • /
    • pp.36-44
    • /
    • 2019
  • $21^{st}$ century is digitally civilized era. Technologies such as AI, Iot, Big Data, Mobile and etc makes this era digitally advanced. These advancement of the technology greatly impacted detection range of the radar. Human's eye sight can see about 20Km and hear 20 ~ 20000 Hz. These limitations can be overcome using radar. This radar technology is used in military, aircraft, ship, vehicle and etc. to replace human eye. However, radar technology is capable of making False Alarm Rate. This document will propose the fix of these problems. Radar's distortion includes beam refraction, diffraction and reflection. These inaccurate data result in deterioration of human judgements and my cause various casualties and damages. Radar goes through annual testing to test how many false alarm is being produced. Normal radar usually makes 10 to 20 False alarms. In emergency situation, if operator were to follow this false alarm, this might result in following false object or take 12 more seconds to follow the right object. This problem can be overcome by using different radar data from different places and angles. This helps reduces False Alarm rate and track the object twice as fast.

Performance Enhancement Algorithm using Supervised Learning based on Background Object Detection for Road Surface Damage Detection (도로 노면 파손 탐지를 위한 배경 객체 인식 기반의 지도 학습을 활용한 성능 향상 알고리즘)

  • Shim, Seungbo;Chun, Chanjun;Ryu, Seung-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.3
    • /
    • pp.95-105
    • /
    • 2019
  • In recent years, image processing techniques for detecting road surface damaged spot have been actively researched. Especially, it is mainly used to acquire images through a smart phone or a black box that can be mounted in a vehicle and recognize the road surface damaged region in the image using several algorithms. In addition, in conjunction with the GPS module, the exact damaged location can be obtained. The most important technology is image processing algorithm. Recently, algorithms based on artificial intelligence have been attracting attention as research topics. In this paper, we will also discuss artificial intelligence image processing algorithms. Among them, an object detection method based on an region-based convolution neural networks method is used. To improve the recognition performance of road surface damage objects, 600 road surface damaged images and 1500 general road driving images are added to the learning database. Also, supervised learning using background object recognition method is performed to reduce false alarm and missing rate in road surface damage detection. As a result, we introduce a new method that improves the recognition performance of the algorithm to 8.66% based on average value of mAP through the same test database.

Analysis of Appropriateness for Maintenance of Aged Small Bridges based on Condition and Load Carrying Capacity Evaluation (상태평가와 내하성능평가를 통한 소규모 노후교량의 유지관리 적정성 분석)

  • Lee, Huseok;Roh, Hwasung;Sun, Jong-Wan;Park, Kyung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.59-66
    • /
    • 2019
  • Small bridges carry out only general inspections based on visual inspection. The Bridges with more than 30 years of public use need to be decided on whether or not they will be reconstruction according to aging. However, there are some situations that need to be determined only by appearance condition, which is insufficient in terms of safety maintenance. In this paper, the condition evaluation and the load carrying capacity evaluation were carried out for aged small bridges. A comparison of the evaluation results was conducted to examine the appropriateness of the maintenance related to the decision making of the reconstruction. As a result of reviewing, two of the bridges showed that there are no abnormality in the safety of the state evaluation, but the load capacity were insufficient. Thus evaluation the safety and performing the reconstruction decision of aged small bridges by visual inspection alone with may cause problems. Therefore, it is necessary to carry out additional research on the ambient measurement and load carrying capacity evaluation for the maintenance of the bridges, and to supplement it through application of the bridge management system.

Development of Robot Platform for Autonomous Underwater Intervention (수중 자율작업용 로봇 플랫폼 개발)

  • Yeu, Taekyeong;Choi, Hyun Taek;Lee, Yoongeon;Chae, Junbo;Lee, Yeongjun;Kim, Seong Soon;Park, Sanghyun;Lee, Tae Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.168-177
    • /
    • 2019
  • KRISO (Korea Research Institute of Ship & Ocean Engineering) started a project to develop the core algorithms for autonomous intervention using an underwater robot in 2017. This paper introduces the development of the robot platform for the core algorithms, which is an ROV (Remotely Operated Vehicle) type with one 7-function manipulator. Before the detailed design of the robot platform, the 7E-MINI arm of the ECA Group was selected as the manipulator. It is an electrical type, with a weight of 51 kg in air (30 kg in water) and a full reach of 1.4 m. To design a platform with a small size and light weight to fit in a water tank, the medium-size manipulator was placed on the center of platform, and the structural analysis of the body frame was conducted by ABAQUS. The robot had an IMU (Inertial Measurement Unit), a DVL (Doppler Velocity Log), and a depth sensor for measuring the underwater position and attitude. To control the robot motion, eight thrusters were installed, four for vertical and the rest for horizontal motion. The operation system was composed of an on-board control station and operation S/W. The former included devices such as a 300 VDC power supplier, Fiber-Optic (F/O) to Ethernet communication converter, and main control PC. The latter was developed using an ROS (Robot Operation System) based on Linux. The basic performance of the manufactured robot platform was verified through a water tank test, where the robot was manually operated using a joystick, and the robot motion and attitude variation that resulted from the manipulator movement were closely observed.

Estimation of Road Surface Condition during Summer Season Using Machine Learning (기계학습을 통한 여름철 노면상태 추정 알고리즘 개발)

  • Yeo, jiho;Lee, Jooyoung;Kim, Ganghwa;Jang, Kitae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.121-132
    • /
    • 2018
  • Weather is an important factor affecting roadway transportation in many aspects such as traffic flow, driver 's driving patterns, and crashes. This study focuses on the relationship between weather and road surface condition and develops a model to estimate the road surface condition using machine learning. A road surface sensor was attached to the probe vehicle to collect road surface condition classified into three categories as 'dry', 'moist' and 'wet'. Road geometry information (curvature, gradient), traffic information (link speed), weather information (rainfall, humidity, temperature, wind speed) are utilized as variables to estimate the road surface condition. A variety of machine learning algorithms examined for predicting the road surface condition, and a two - stage classification model based on 'Random forest' which has the highest accuracy was constructed. 14 days of data were used to train the model and 2 days of data were used to test the accuracy of the model. As a result, a road surface state prediction model with 81.74% accuracy was constructed. The result of this study shows the possibility of estimating the road surface condition using the existing weather and traffic information without installing new equipment or sensors.