• Title/Summary/Keyword: Vehicle Test

Search Result 3,991, Processing Time 0.032 seconds

Experimental Study on the Interval of Emergency Exits in Long Traffic Tunnels (장대 교통터널의 피난연락갱 설치 간격에 관한 실험적 연구)

  • Yoo Yongho;Yoon Sungwook;Kim Jin;Yoon Chanhoon
    • Tunnel and Underground Space
    • /
    • v.15 no.1 s.54
    • /
    • pp.61-70
    • /
    • 2005
  • The objective of this study was to analyze the smoke movement for the case of fire and to determine the interval between emergency exits in long tunnels. Based on Froude modeling, the 1/50 scaled model tunnel (20 m long) was constructed by acrylic tubes and tests were carried out systematically. From the strong relationship between CO propagation time and distance through the tunnel, it was found that the optimal escaping time was 6 minutes in case of 20MW fire. But, regarding passengers' psychological state under fire, another one minute of delay time should be considered. Therefore, the total escaping time should be estimated by 5 minutes. The interval between the emergency exits for vehicle passengers was calculated by 250 m with respect to the 5 minute of escaping time.

Behavior of Laterally Damaged Prestressed Concrete Bridge Girders Repaired with CFRP Laminates Under Static and Fatigue Loading

  • ElSafty, Adel;Graeff, Matthew K.;Fallaha, Sam
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.1
    • /
    • pp.43-59
    • /
    • 2014
  • Many bridges are subject to lateral damage for their girders due to impact by over-height vehicles collision. In this study, the optimum configurations of carbon fiber reinforced polymers (CFRP) laminates were investigated to repair the laterally damaged prestressed concrete (PS) bridge girders. Experimental and analytical investigations were conducted to study the flexural behavior of 13 half-scale AASHTO type II PS girders under both static and fatigue loading. Lateral impact damage due to vehicle collision was simulated by sawing through the concrete of the bottom flange and slicing through one of the prestressing strands. The damaged concrete was repaired and CFRP systems (longitudinal soffit laminates and evenly spaced transverse U-wraps) were applied to restore the original flexural capacity and mitigate debonding of soffit CFRP longitudinal laminates. In addition to the static load tests for ten girders, three more girders were tested under fatigue loading cycles to investigate the behavior under simulated traffic conditions. Measurements of the applied load, the deflection at five different locations, strains along the cross-section height at mid-span, and multiple strains longitudinally along the bottom soffit were recorded. The study investigated and recommended the proper CFRP repair design in terms of the CFRP longitudinal layers and U-wrapping spacing to obtain flexural capacity improvement and desired failure modes for the repaired girders. Test results showed that with proper detailing, CFRP systems can be designed to restore the lost flexural capacity, sustain the fatigue load cycles, and maintain the desired failure mode.

A Study on The Effect of High Temperature on Fatigue Life of The Vehicle Spring Steel (쇼트피이닝 가공된 차량용 스프링강의 피로수명에 미치는 고온의 영향)

  • Park, Keyoung-Dong;Ha, Keyoung-Jun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.167-172
    • /
    • 2002
  • In this study, CT specimens were prepared from spring steel(SUP9) processed shot peening which was room temperature, high temperature experiment. And ire got the following characteristics from fatigue crack growth test carried out in the environment of room, and high temperature at $25^{\circ}C,\;100^{\circ}C,\;150^{\circ}C$ and $180^{\circ}C$ in the range of stress ratio of 0.3 by means of opening mode displacement. The threshold stress intensity factor range ${\Delta}Kth$ in the early stage of fatigue crack growth (Region I) and stress intensity (actor range ${\Delta}K$ in the stable of fatigue crack growth (Region II) was decreased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at high temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region.

  • PDF

Prediction of Postural Sagging Observed During Driving in Korean Male Drivers (한국인 남성 운전자의 운전 자세에서 발생하는 몸통 처짐 현상에 관한 예측 모델 연구)

  • Oh, Youngtaek;Jung, Eui S.;Park, Sungjoon;Jeong, Seong Wook
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • In the vehicle design, the research on driving posture has stood out as one of the important issues. Recently, the research on 3D human modeling focused on more exact implementation of real driving posture. However, prediction of driving posture through the 3D human modeling fail to reflect on the model the phenomenon called sagging, which refers to the retraction or shrinking of the torso while driving. 30 male subjects participated in the experiment where total subjects were divided into four groups according to height percentile(under 50%ile, 51%ile to 75%ile, 76%ile to 95%ile, over 95%ile). The independent variables were seat back angle(4 levels) and seat pan angle(2 levels). The dependent variable was capacity or the degree of retraction of the torso. First this study measured the sagging capacity by using a paired T-test between erect and retracted posture. Secondly it was tried to find out significant anthropometric variables that were statistically correlated by the analysis of correlation. Finally, a prediction model was derived which explains the capacity of sagging.

A Study on the Uplift for Applying of Heavy Simple Catenary System in a Overhead Rigid Conductor Rail Transition Section (강체전차선로 이행구간 Heavy Simple Catenary 적용을 위한 압상량 고찰)

  • Kim, Wan-il;Park, Weon-Chan;Lee, Jae-Bong;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.5
    • /
    • pp.688-694
    • /
    • 2018
  • The transition section of the overhead rigid conductor rail (ORCR) consists of a direct induction device and a limit point to prevent the power supply failure and failure of the electric railway vehicle pantograph due to the difference of the uplift in the catenary line. In T-Bar transition section, a twin simple catenary is mostly installed between the overhead catenary system (OCS) in the ground section and the ORCR in the underground section. In this paper, we compare and analyze the possibility of replacing the twin simple catenary with heavy simple catenary. The reliability of numerical analysis results was confirmed by comparing field test with numerical results. Comparing the numerical results of the twin simple catenary with the heavy simple catenary in the transition section, the difference uplift is 5.9[mm] on average. When applying heavy simple catenary instead of twin simple catenary, the slight difference of uplift can be compensated by adjusting the height of hanger-ear or support bracket.

Development of Image Processing Technology for Interaction between Pantograph and Overhead Contact Wire (팬터그래프-전차선로 접촉부 영상처리 기술 개발)

  • Kim, Hyung-Jun;Park, Young;Cho, Yong-Hyeon;Cho, Chul-Jin;Kim, In-Chol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1084-1088
    • /
    • 2009
  • The measurement of dynamic stagger in electric railways is one of the key test parameters to increase speed and maintain safety in electric railways. This paper is introduces a non-contact optical-based measuring instrument of a catenary system in electric railways. The instrument is implemented by utilizing a CCD (Charge Coupled Device) camera installed on the roof of a vehicle for vision acquisition and image processing techniques including the Canny edge detector and the Hough transform to detect contact wires and calculate dynamic stagger. To check the validity of our approach for the intended application, we measured stagger of a overhead wire of a Korea Tilting Train (TTX). The non-contact optical-based measurement system proposed in this paper performs real-time stagger measurement of an activated high-voltage contact wire. By results of this paper, the instrument should be applied to assess performance and reliability of newly developed electric railway vehicles.

An Energy Optimization Technique for Latency and Quality Constrained Video Applications (지연 시간 및 화질 제약이 있는 비디오 응용을 위한 에너지 최적화 기법)

  • 임채석;하순회
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.10
    • /
    • pp.543-552
    • /
    • 2004
  • This paper proposes an energy optimization technique for latency and quality constrained video applications. It consists of two key techniques: frame-skipping technique and buffering technique. While buffering increases the slack time utilization at the OS level. frame skipping Increases the slack time itself at the application level, and both enhance the effectiveness of the dynamic voltage scaling technique. We use an H.263 encoder application as a test vehicle to which the proposed technique is applied. Experiments demonstrate that the proposed technique achieves noticeable energy reduction satisfying the given latency and video quality constraints.

The Development of Clutch Control for Manual Transmission Vehicle based on Stepping Motor (스탭핑 모터에 의한 수동변속기 차량의 클러치 제어 개발에 관한 연구)

  • Park, Young-Kug;Park, Joon-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.3849-3855
    • /
    • 2012
  • This paper describes a control algorithm and test results of an automated manual transmission clutch actuated by a stepping motor. The control algorithm extracts driver's demand from CAN signals and decides the exact timing to engage or disengage the clutch based on the demand. A pulse signal is generated to drive the clutch and the travel of the clutch can be calculated by accumulating the pulse signal. An auto code generation method was introduced in implementing the control logic to the micro-processor of the prototype controller and a series of basic tests were carried out to validate its performance.

Feasibility Analysis for White Pavement Markings in the Roadways with Median Barrier (일반도로 중앙분리대 측 백색 실선 도입 타당성 분석 연구)

  • Kim, Da-Ye;Hong, Kyung-Sik;Lee, Ho-Won
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.75-84
    • /
    • 2018
  • PURPOSES: This study analyzes feasibility for application white pavement markings in the roadways with median barrier. METHODS : By reviewing numerous relevant laws, standards, and operational cases, the white pavement markings' excellence was demonstrated. Driver's behavior was analyzed through a virtual driving experiment using driving simulator and field tests. RESULTS:First, white pavement markings are superior to yellow pavement markings in terms of visibility, economics, and safety. Second, as a result of virtual driving experiment, the color of line in the roadway with median barrier didn't affect the driver's behavior such as the average vehicle speed, the distance bias in the lane and the separation distance from the centerline. Third, field test demonstrated that the driver tended to recognize the median barrier as an obstacle. In addition, the central driving ratio in the lane was increased due to improving the visibility of line at night in case of the white pavement markings. CONCLUSIONS : The application of white pavement markings in the roadways with median barrier can enhance traffic safety by improving the visibility of line at night.

A Study on the Clamping Force of an Automotive Air-conditioning Hose according to the Friction Coefficient (마찰계수를 고려한 자동차용 에어컨 호스의 체결력에 관한 연구)

  • Baek, Jae-Kwon;Kim, Byung-Tak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.39-46
    • /
    • 2011
  • The automotive air conditioning hose is used for connecting the components of air conditioner in a vehicle. The hose is usually manufactured by the swaging process to connect the rubber hose with the metal fitting at the end of the hose. In case that the clamping force is small, the refrigerant gas in the hose can leak locally under the severe operating circumstances. The practical test of clamping force is performed by means of the measurement of separation force. In this study, the swaging process of a hose is simulated with the finite element method, to investigate the effect of friction coefficient on the clamping force. The contact condition is used in consideration of real manufacturing process, and the material properties for the Mooney-Rivlin model is obtained by the experimental results. The result interpretations are focused on the contact forces, which is displayed graphically with respect to friction coefficient, on the surfaces between the hose and the metal fittings.