• Title/Summary/Keyword: Vehicle Suspension System

Search Result 454, Processing Time 0.024 seconds

Optimum Design of Suspension Systems Using a Genetic Algorithm (유전 알고리즘을 이용한 현가장치의 기구학적 최적설계)

  • 이덕희;김태수;김재정
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.138-147
    • /
    • 2000
  • Vehicle suspension systems are parts which effect performances of a vehicle such as ride quality, handing characteristics, straight performance and steering effort etc. Kinematic design is a decision of joints` position for straight performance and steering effort. But, when vehicle is rebounding and bumping, chang of joints` displacement is nonlinear and a surmise of straight performance and steering effort at that joints` position is difficult. So design of suspension systems is done through a inefficient method of tried-and-error depending on designer`s experience. In this paper, kinematic design of suspension systems was done through the optimal design using a genetic algorithm. For this optimal design, the function for quantification of straight performance and steering effort was made, and the kinematic design method of suspension systems having this function as the objective function was suggested.

  • PDF

Effects of Suspension Compliance and Chassis Flexibility in Handling Performance (현가장치의 유연성과 차체의 탄성효과가 조종안정성에 미치는 영향 분석)

  • Kang, Dong-Kwon;Yoo, Wan-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.137-143
    • /
    • 1997
  • In this study, handling simulation of a passenger car is carried out to see the effects of suspension compliance, roll stabilizef bar and chassis flexibility. The front suspension of the car is a MacPherson strut type and the rear suspension is a multi-link type. The following five DADS models are constructed and compared to verify the effects of suspension compliance and chassis flexibility during lane change. (1) Vdhicle model without hard point compliance and stabilizer, (2) Vehicle model with hard point compoiance, (3) Vehicle model with hard point compliance and stabilizer, (4) Vehicle model with hard point compoiance, stabilizer, and one vibration mode of the chaxxis. (5) Vehicle model with hard point compliance, stabilizer, and three vibration modes of the chassis. The result shows that hard point compliance and stabilizer are significant in roll angle, and the flexibility of the chassis affects the yaw angle and yaw rate.

  • PDF

Semi-Active Control for Improving Ride Comfort in Railway Vehicle by MR Damper (MR 댐퍼를 이용한 철도차량 승차감 반능동 제어)

  • Shin, Yu-Jeong;You, Won-Hee;Jung, Heung-Chae
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1929-1934
    • /
    • 2011
  • Recently the maximum speed becomes the most important performance in high speed train. But the speed up of train will not give the passenger good riding comfort. The semi-active suspension system by using variable damper with hydraulic solenoid valve is used to solve this problem. But the variable damper with hydraulic solenoid valve requires tank for supplying fluid. In this study, the MR(Magneto Rheological) damper was considered instead of hydraulic variable damper in order to improve riding comfort. Dynamic simulation was conducted for semi-active suspension system with MR damper was made by using Matlab-Simulink S/W. According to control strategy of MR damper for improving ride comfort in railway vehicle, The riding comfort of the railway vehicle with semi-active suspension system was analyzed and compared with conventional suspension system by using the program.

  • PDF

Dynamics of the Macpherson Strut Motor-Vehicle Suspension System in Point and Joint Coordinates

  • Attia, Hazem-Ali
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1287-1296
    • /
    • 2003
  • In this paper the dynamic analysis of the Macpherson strut motor-vehicle suspension system is presented. The equations of motion are formulated using a two-step transformation. Initially, the equations of motion are derived for a dynamically equivalent constrained system of particles that replaces the rigid bodies by applying Newton's second law The equations of motion are then transformed to a reduced set in terms of the relative joint variables. Use of both Cartesian and joint variables produces an efficient set of equations without loss of generality For open chains, this process automatically eliminates all of the non-working constraint forces and leads to an efficient solution and integration of the equations of motion. For closed loops, suitable joints should be cut and few cut-joints constraint equations should be included for each closed chain. The chosen suspension includes open and closed loops with quarter-car model. The results of the simulation indicate the simplicity and generality of the dynamic formulation.

Effect of the Parameter of the Suspension System on the the Vertical Vibration of the Passenger Vehicle (객차의 현가장치 변수가 상하진동에 미치는 영향)

  • Hur, Hyun-Moo;Kwon, Young-Pil;Choi, Kyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1309-1316
    • /
    • 2002
  • The purpose of this study is to analyze the effects of the parameters of the suspension system in railway rolling-stock for KT-23 type passenger vehicle. According to the results of simulation and the field test, Optimal condition was obtained for the stiffness ratio of the primary spring and the secondary of the suspension system. When the stiffness ratio was increased, the vibration was increased on the car body and decreased on the bogie, and ride quality are getting worse because of increase of the vertical natural frequency of the car body. The results of this study are usefull to improve the technology of the ride quality of KT-23 type vehicle.

CHAOTIC THRESHOLD ANALYSIS OF NONLINEAR VEHICLE SUSPENSION BY USING A NUMERICAL INTEGRAL METHOD

  • Zhuang, D.;Yu, F.;Lin, Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • Since it is difficult to analytically express the Melnikov function when a dynamic system possesses multiple saddle fixed points with homoclinic and/or heteroclinic orbits, this paper investigates a vehicle model with nonlinear suspension spring and hysteretic damping element, which exhibits multiple heteroclinic orbits in the unperturbed system. First, an algorithm for Melnikov integrals is developed based on the Melnikov method. And then the amplitude threshold of road excitation at the onset of chaos is determined. By numerical simulation, the existence of chaos in the present system is verified via time history curves, phase portrait plots and $Poincar{\acute{e}}$ maps. Finally, in order to further identify the chaotic motion of the nonlinear system, the maximal Lyapunov exponent is also adopted. The results indicate that the numerical method of estimating chaotic threshold is an effective one to complicated vehicle systems.

Ride Comfort Evaluation of Electronic Control Suspension Using a Magneto-rheological Damper (MR 댐퍼를 이용한 전자제어 현가장치의 승차감 평가)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.463-471
    • /
    • 2013
  • This paper presents design and control of electronic control suspension(ECS) equipped with controllable magnetorheological(MR) damper for passenger vehicle. In order to achieve this goal, a cylindrical type MR fluid damper that satisfies design specification of a middle-sized commercial passenger vehicle is proposed. After manufacturing the MR damper with design parameters, their field-dependent damping forces are experimentally evaluated and compared with those of a conventional damper. A quarter-vehicle MR ECS system consisting of sprung mass, spring, tire, controller and the MR damper is established in order to investigate the ride comfort performances. On the basis of the governing equation of motion of the suspension system, five control strategies(soft, hard, comfort, sport and optimal mode) are formulated. The proposed control strategies are then experimentally realized with the quarter-vehicle MR ECS system. Control performances such as vertical acceleration of the car body and tire deflection are evaluated in frequency domains on random road condition. In addition, performance comparison of WRMS(weighted root mean square) of the quarter-vehicle MR ECS system on random road are undertaken in order to investigate ride comfort characteristics.

A Study of Hybrid Control of Active Suspension System (능동 현가계의 합성 제어에 관한 연구)

  • 김효준;박혁성;양현석;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.345-350
    • /
    • 1996
  • The suspension system plays an important role in vehicle performance. To improve suspension characteristics related to riding comfort and handling stability simultaneously, active suspension system is developed. In this study, a hybrid control scheme is proposed, the idea of which is that the sliding mode control is applied to nonlinear hydraulic system and the skyhook control is applied for controlling the motion of the suspension system. The performance of the proposed control method is evaluated by simulation and experiment of a half car active suspension system.

  • PDF

Mobility Stabilization of a $6\times6$ Robot Vehicle by Suspension Kinematics Reconfiguration (현가장치 기구 재구성에 의한 $6\times6$ 로봇차량의 기동성 안정화)

  • Baek, W.K.;Lee, J.W.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.39-45
    • /
    • 2010
  • The dynamic stability of a robot vehicle can be enhanced by the Force-Angle Stability Margin concept that considers a variety of dynamic effects. To evaluate the robot vehicle stability, a SPI(stability performance index), which is a function of the suspension arm angles, was used. If the SPI has a minimum value, the robot vehicle has maximum stability. The FASM and SPI concepts were incorporated in the mobility simulation by using ADAMS and MATLAB/Simulink. The simulation results using these concepts showed significant improvements of the vehicle stability on rough terrains.

Real-time Dynamic Simulation Using Multibody Vehicle Model (다물체 차량모델을 이용한 실시간 동역학 시뮬레이션)

  • Choe, Gyu-Jae;No, Gi-Han;Yu, Yeong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.486-494
    • /
    • 2001
  • This paper presents a real-time multibody vehicle dynamic analysis method using recursive Kanes formulation and suspension composite joints. To shorten the computation time of simulation, relative coordinate system is used and the equations of motion are derived using recursive Kanes formulation. Typical suspension systems of vehicles such as MacPherson strut suspension system is modeled by suspension composite joints. The joints are derived and utilized to reduce the computation time of simulation without any degradation of kinematical accuracy of the suspension systems. Using the develop program, a multibody vehicle dynamic model is formed and simulations are performed. Accuracy of the simulation results is compared to the real vehicle field test results. It is found that the simulation results using the proposed method are very accurate and real-time simulation is achieved on a computer with single PowerPC 604 processor.