• Title/Summary/Keyword: Vehicle Speed and Distance

Search Result 312, Processing Time 0.03 seconds

A Hybrid Genetic Algorithm for Vehicle Routing Problem which Considers Traffic Situations and Stochastic Demands (교통상황과 확률적 수요를 고려한 차량경로문제의 Hybrid 유전자 알고리즘)

  • Kim, Gi-Tae;Jeon, Geon-Uk
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.5
    • /
    • pp.107-116
    • /
    • 2010
  • The vehicle travel time between locations in a downtown is greatly influenced by both complex road conditions and traffic situation that changes real time according to various external variables. The customer's demands also stochastically change by time period. Most vehicle routing problems suggest a vehicle route considering travel distance, average vehicle speed, and deterministic demand; however, they do not consider the dynamic external environment, including items such as traffic conditions and stochastic demand. A realistic vehicle routing problem which considers traffic (smooth, delaying, and stagnating) and stochastic demands is suggested in this study. A mathematical programming model and hybrid genetic algorithm are suggested to minimize the total travel time. By comparing the results considering traffic and stochastic demands, the suggested algorithm gives a better solution than existing algorithms.

Development of an Intelligent Cruise Control using Path Planning based on a Geographic Information System (지리정보시스템 기반 경로계획을 이용한 지능형순항제어시스템 개발)

  • Lim, Kyung-Il;Oh, Jae-Saek;Lee, Je-Uk;Kim, Jung-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.217-223
    • /
    • 2015
  • Autonomous driving is no longer atechnology of the future since the development of autonomous vehicles has now been realized, and many technologies have already been developed for the convenience of drivers. For example, autonomous vehicles are one of the most important drive assistant systems. Among these many drive assistant systems, Cruise Control Systems are now a typical technology. This system constantly maintains a vehicle's speed and distance from a vehicle in front by using Radar or LiDAR sensors in real time. Cruise Control Systems do not only serve their original role, but also fulfill another role as a 'Driving Safety' measure as they can detect a situation that a driver did not predict and can intervene by assuming a vehicle's longitude control. However, these systems have the limitation of only focusing on driver safety. Therefore, in this paper, an Intelligent Cruise Control System that utilizes the path planning method and GIS is proposed to overcome some existing limitations.

Vehicle Routing Problem with Delay Time in the Downtown (도심지의 지체 시간을 고려한 차량 경로 계획에 관한 연구)

  • Yun, Tae-Sik;Kim, Kyung-Sup;Jeong, Suk-Jae
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.1
    • /
    • pp.39-47
    • /
    • 2007
  • The travel speed between two locations within the downtown differs according to time horizon and district. Also, There is delay time on numerous traffic signals and bottle neck areas. It has an influence on planning the vehicle routing. However, there are almost no studies focusing on delay time for distance and travel time between two locations among the existing researches for vehicle routing problem (VRP). In this paper, we approach the real VRP by designing the model which estimates the delay time for traffic signal and bottle neck areas. The results of computation experiment demonstrate that proposed method performs well and have better solution than other method not considering the delay time.

  • PDF

Measuring Particle Number from Light-duty Diesel Vehicles in WLTP Driving Cycle (WLTP 주행모드에서의 경유차 입자상물질 개수 배출 특성)

  • Park, Junhong;Lee, Jongtae;Kim, Jeongsoo;Kim, Sunmoon;Ahn, Keunhwan
    • Journal of ILASS-Korea
    • /
    • v.18 no.3
    • /
    • pp.155-160
    • /
    • 2013
  • Worldwide harmonized light-duty vehicle test procedure (WLTP) for emission certification has been developed in WP.29 forum in UN ECE since 2007. The test procedure is expected to be applied to Korean light-duty diesel vehicles at the same time of adoption in Europe. The air pollutant emissions from light-duty vehicles have been regulated with weight per distance travelled which means the driving cycles can affect the results. The six Euro-5 light-duty diesel vehicles including sedan, SUV and truck have been tested with WLTP, NEDC which is used for emission certification for light-duty diesel vehicles, and CVS-75 to estimate how much particle number emission can be affected by different driving cycles. The averaged particle number emissions have not shown statistically meaningful difference. The maximum particle number emission have been found in Low speed phase of WLTP which is mainly caused by cooled engine conditions. The amount of particle number emission in cooled engine condition is much different as test vehicles. It means different technical solution is required in this aspect to cope with WLTP driving cycle.

High-resolution range and velocity estimation method based on generalized sinusoidal frequency modulation for high-speed underwater vehicle detection (고속 수중운동체 탐지를 위한 일반화된 사인파 주파수 변조 기반 고해상도 거리 및 속도 추정 기법)

  • Jinuk Park;Geunhwan Kim;Jongwon Seok;Jungpyo Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.4
    • /
    • pp.320-328
    • /
    • 2023
  • Underwater active target detection is vital for defense systems, requiring accurate detection and estimation of distance and velocity. Sequential transmission is necessary at each beam angle, but divided pulse length leads to range ambiguity. Multi-frequency transmission results in time-bandwidth product losses when bandwidth is divided. To overcome these problem, we propose a novel method using Generalized Sinusoidal Frequency Modulation (GSFM) for rapid target detection, enabling low-correlation pulses between subpulses without bandwidth division. The proposed method allows for rapid updates of the distance and velocity of target by employing GSFM with minimized pulse length. To evaluate our method, we simulated an underwater environment with reverberation. In the simulation, a linear frequency modulation of 0.05 s caused an average distance estimation error of 50 % and a velocity estimation error of 103 % due to limited frequency band. In contrast, GSFM accurately and quickly tracked targets with distance and velocity estimation errors of 10 % and 14 %, respectively, even with pulses of the same length. Furthermore, GSFM provided approximate azimuth information by transmitting highly orthogonal subpulses for each azimuth.

Design and Analysis of High-Speed Unmanned Aerial Vehicle Ground Directional Rectifying Control System

  • Yin, Qiaozhi;Nie, Hong;Wei, Xiaohui;Xu, Kui
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.623-640
    • /
    • 2017
  • The full nonlinear equations of an unmanned aerial vehicle ground taxiing mathematical dynamic model are built based on a type of unmanned aerial vehicle data in LMS Virtual.Lab Motion. The flexible landing gear model is considered to make the aircraft ground motion more accurate. The electric braking control system is established in MATLAB/Simulink and the experiment of it verifies that the electric braking model with the pressure sensor is fitted well with the actual braking mechanism and it ensures the braking response speediness. The direction rectification control law combining the differential brake and the rudder with 30% anti-skid brake is built to improve the directional stability. Two other rectifying control laws are demonstrated to compare with the designed control law to verify that the designed control is of high directional stability and high braking efficiency. The lateral displacement increases by 445.45% with poor rectification performance under the only rudder rectifying control relative to the designed control law. The braking distance rises by 36m and the braking frequency increases by 85.71% under the control law without anti-skid brake. Different landing conditions are simulated to verify the good robustness of the designed rectifying control.

A study on Pedestrian Accident Reconstruction Models: Comparison and Improvement (보행자-차량 충돌사고 재현모형 비교분석 및 개선 연구)

  • Jo, Jeong-Il;O, Cheol;Kim, Nam-Il;Jang, Myeong-Sun
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.4
    • /
    • pp.69-77
    • /
    • 2007
  • This study presents comparison results for pedestrian accident reconstruction models representing the relationship between collision speed and horizontal distance that a body travels while falling and sliding. A set of 49 reliable pedestrian accident cases are applied to compare the existing reconstruction models. In addition, the authors investigate the effects of a set of parameters associated with the effects of the frontal shape of a vehicle on the horizontal distance a pedestrian travels while falling and sliding. It has been revealed that the length of the bumper is the most dominant factor to affect the horizontal distance of pedestrian travel after collision. Further analyses utilizing more accident data need to conducted to develop a more accurate and reliable reconstruction model.

Traffic Measurement : Moving Vehicle Method Using CCTV (교통량 측정 : CCTV를 이용한 주행 차량 조사법)

  • Huh, Moon-Hang;Shin, Seong-Yoon;Rhee, Yang-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2575-2580
    • /
    • 2013
  • In this paper, we watch out key measure of the level of transportation service about travel time and delay time. And we measured vehicle traffic by moving vehicle method using CCTV which is one of the travel time measure. We should be measured in place of continuous traffic flow characteristics with wide traffic light interval. In addition, traffic flow on the other side of the interval must be sufficiently identifiable and at the end of this section must be possible U-turn. This method it requires only the driver of the vehicle because of the CCTV measure. In addition, We cannot require time, distance, and traffic equipment that can be recorded. Because equipped with the software to do that. In addition to traffic, average travel time, average space speed, traffic density are also available.

A Study on Interaction between Two Vessels Passing Close to Each Other on Parallel Courses and Calculation of Collision Time by its effect (근접 항해하는 선박의 상호작용과 충돌시간 계산에 관한 연구)

  • Lee Chun-Ki;Yoon Jeom-Dong;Kang Il-Kwon
    • Journal of Navigation and Port Research
    • /
    • v.30 no.5 s.111
    • /
    • pp.315-320
    • /
    • 2006
  • It is well known that the ship manoeuvring motion is greatly affected by hydrodynamic forces and moments acting between two vessels passing too close to each other in confined waters, such as in a harbour or narrow channel. This interaction between two vessels could be assumed to be the functions of the longitudinal distance, transverse distance and their speeds. The aim of this study is to calculate the interaction between two vessels passing close to each other on parallel courses by simulation, and to estimate the effect of rudder action and time at collision through simulation under the condition of various longitudinal distances and different speed-ratios of the two vessels.

A Study on Interaction between Two Vessels Passing Close to Each Other on Parallel Courses and Calculation of Collision Time by its effect (근접 항해하는 선박의 상호작용과 충돌시간 계산에 관한 연구)

  • Lee Chun-Ki;Yoon Jeom-Dong;Kang Il-Kwon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.55-60
    • /
    • 2006
  • It is well known tint the ship manoeuvring motion is greatly affected by hydrodynamic forces and moments acting between two vessels passing too close to each other in confined waters, such as in a harbour or narrow channel. This interaction between two vessels could be assumed to be the functions of the longitudinal distance, transverse distance and their speeds. The aim of this study is to calculate the interaction between two vessels passing close to each other on parallel courses by simulation, and to estimate the effect of rudder action and time of collision through simulation under the condition of various longitudinal distances and different speed-ratios of the two vessels.

  • PDF