• Title/Summary/Keyword: Vehicle Speed Estimation

Search Result 231, Processing Time 0.023 seconds

A Study of Tire Road Friction Estimation for Controlling Rear Wheel Driving Force of 4WD Vehicle (4WD 차량의 후륜 구동력 제어를 위한 구동시 노면마찰계수 추정에 관한 연구)

  • Park, Jae-Young;Shim, Woojin;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.512-519
    • /
    • 2016
  • In this study, the tire road friction estimation(TRFE) algorithm for controlling the rear wheel driving force of a 4WD vehicle during acceleration is developed using a standard sensor in an ordinary 4WD passenger car and a speed sensor. The algorithm is constructed for the wheel shaft torque, longitudinal tire force, vertical tire force and maximum tire road friction estimation. The estimation results of shaft torque and tire force were validated using a torque sensor and wheel force transducer. In the algorithm, the current road friction is defined as the proportion calculated between longitudinal and vertical tire force. Slip slop methods using current road friction and slip ratio are applied to estimate the road friction coefficient. Based on this study's results, the traction performance, fuel consumption and drive shaft strength performance of a 4WD vehicle are improved by applying the tire road friction estimation algorithm.

Vibratory loads and response prediction for a high-speed flight vehicle during launch events

  • Kim, Jinhyeong;Park, Seoryong;Eun, Wonjong;Shin, Sangjoon;Lee, Soogab
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.551-564
    • /
    • 2016
  • High-speed flight vehicles (HSFVs) such as space launch vehicles and missiles undergo severe dynamic loads which are generated during the launch and in in-flight environments. A typical vehicle is composed of thin plate skin structures with high-performance electronic units sensitive to such vibratory loads. Such lightweight structures are then exposed to external dynamic loads which consist of random vibration, shock, and acoustic loads created under the operating environment. Three types of dynamic loads (acoustic loads, rocket motor self-induced excitation loads and aerodynamic fluctuating pressure loads) are considered as major components in this study. The estimation results are compared to the design specification (MIL-STD-810) to check the appropriateness. The objective of this paper is to study an estimation methodology which helps to establish design specification for the dynamic loads acting on both vehicle and electronic units at arbitrary locations inside the vehicle.

Estimation of Injury Severity of Occupant based on the Vehicle Deformation at Frontal Crash Accident (자동차 정면충돌에서 자동차 영구 변형량에 따른 승객 상해 추정)

  • Kim, Seungki;Choi, Hyung Yun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.63-71
    • /
    • 2013
  • The estimation of occupant injury risk at crash accident is one of the most important assessments for the vehicle crashworthiness performance. The design of safety devices such as occupant restraining system also depend on the kinematics of occupant and its injury risk. The real world in-depth accident investigation provides detailed and realistic information of vehicle damage and occupant injury as well as the accident conditions. This paper introduces a statistical analysis of NASS/CDS database and domestic accident data to correlate speed change, vehicle damage extend, and occupant injury at frontal crash. The maximum crush extend shows a linear relationship with the effective impact speed. The injury risks of the occupant with and without restraining were also respectively quantified with the crush extend. This result can be effectively used for the emergent rescue of crash victims with automatic crash notification system.

Instantaneous GHG Emission Estimation Method Considering Vehicle Characteristics in Korea (국내 차량의 동적 주행 특성을 반영한 미시적 온실가스 배출량 산정방법론)

  • Hu, Hyejung;Yoon, Chunjoo;Lee, Taewoo;Yang, Inchul;Sung, Junggon
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.6
    • /
    • pp.90-105
    • /
    • 2013
  • There are lots of variations on speed, acceleration and engine power during vehicle driving. It is well known that Green House Gas emissions by these dynamic driving properties are not precisely estimated by the average speed based emission estimation model which has been currently used in Korea. MOVES are selected as an appropriate transferable model among Micro-level emission estimation models. Based on MOVES, a novel emission estimation model can be used in Korea is developed. In this model, MOVES concept of emission estimation method and the MOVES method of estimating the Micro-level emission rate map is adopted. The results from the proposed model were compared with those from the average speed based emission model. The comparison results show the estimated base emission maps are good to be applied in Korea, but needed to be adjusted to consider the vehicle size differences between the two countries. Therefore, the factors for calibrating vehicle size difference were calculated and applied to acquired the micro-level emission maps for the Korean standard vehicle types.

A High-Speed Autonomous Navigation Based on Real Time Traversability for 6×6 Skid Vehicle (실시간 주행성 분석에 기반한 6×6 스키드 차량의 야지 고속 자율주행 방법)

  • Joo, Sang-Hyun;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.251-257
    • /
    • 2012
  • Unmanned ground vehicles have important military, reconnaissance, and materials handling application. Many of these applications require the UGVs to move at high speeds through uneven, natural terrain with various compositions and physical parameters. This paper presents a framework for high speed autonomous navigation based on the integrated real time traversability. Specifically, the proposed system performs real-time dynamic simulation and calculate maximum traversing velocity guaranteeing safe motion over rough terrain. The architecture of autonomous navigation is firstly presented for high-speed autonomous navigation. Then, the integrated real time traversability, which is composed of initial velocity profiling step, dynamic analysis step, road classification step and stable velocity profiling step, is introduced. Experimental results are presented that demonstrate the method for a $6{\times}6$ autonomous vehicle moving on flat terrain with bump.

Estimation of longitudinal velocity noise for rail wheelset adhesion and error level

  • Soomro, Zulfiqar Ali
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.3
    • /
    • pp.261-270
    • /
    • 2016
  • The longitudinal velocity (forward speed) having significant importance in proper running of railway wheelset on track, depends greatly upon the adhesion ratio and creep analysis by implementation of suitable dynamic system on contamination. The wet track condition causes slip and slide of vehicle on railway tracking, whereas high speed may also increase slip and skidding to severe wear and deterioration of mechanical parts. The basic aim of this research is to design appropriate model aimed estimator that can be used to control railway vehicle forward velocity to avoid slip. For the filtration of disturbance procured during running of vehicle, the kalman filter is applied to estimate the actual signal on preferered samples of creep co-efficient for observing the applied attitude of noise. Thus error level is detected on higher and lower co-efficient of creep to analyze adhesion to avoid slip and sliding. The skidding is usually occurred due to higher forward speed owing to procured disturbance. This paper guides to minimize the noise and error based upon creep coefficient.

Implementation of In-wheel Motor Driving System for Electric Vehicle (In-wheel 모터를 이용한 전기자동차 구동시스템의 구현)

  • Yun, Si-Young;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.750-755
    • /
    • 2013
  • In-wheel motor system gets the driving force from direct-driven motor in the wheel of electric vehicle. It is known as good system for vehicles, from an efficiency, packaging, handling and safety. This paper describes motor and inverter technologies, system configuration and control algorithms for in-wheel type electric vehicle. It is necessary to control on an interrelation perspective because this system drives two motors at same time. In system design, IPMSM(Interior Permanent Magnet Synchronous Motor) including a wide operating range and high-speed rpm is used and flux weakening control is performed in constant power range. Under the torque command from the host controller, auto control box, inverter's output torque is calculated with using torque estimation technique and applied to actual vehicle driving system. It is verified that the configuration and the algorithm are suitable for the in-wheel motor system.

A Study on Correlation Between Skid Distance and Pre-Braking Speed (활주거리와 제동전 속도간의 상관관계에 관한 연구)

  • Jeong, U-Taek;O, Yeong-Tae;Park, Yeong-Su;Ryu, Tae-Seon
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.3
    • /
    • pp.115-122
    • /
    • 2011
  • This paper investigates the accuracy of the vehicle pre-braking speed estimated based upon measured skidding distance. Driver ordinarily takes sudden braking when urgent situation is developed in the front or when the driver is involved in an unexpected situation, and the driver may be inflicted upon an accident depending on the required stopping distance. Among factors influencing the stopping distance of vehicle such as recognition response time of driver, performance of vehicle's braking device, and state of road surface etc, pre-braking speed is seemingly the most important influencing factor. Currently, in the investigating section of traffic accidents, the state of overspeed is determined by the pre-skidding speed calculated based on the length of skid mark. In order to identify the accurate cause of the accident, it is strongly recommended that estimation of pre-braking speed should be estimated taking into account speed reduction during transient time. In this study, we propose a method for estimating more accurate exact speed information of vehicle at the time of traffic accident. The outcomes from this study potentially help better understanding of the characteristics of vehicle for traffic safety in the future.

Vehicle Dynamics and Road Slope Estimation based on Cascade Extended Kalman Filter (Cascade Extended Kalman Filter 기반의 차량동특성 및 도로종단경사 추정)

  • Kim, Moon-Sik;Kim, Chang-Il;Lee, Kwang-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.208-214
    • /
    • 2014
  • Vehicle dynamic states used in various advanced driving safety systems are influenced by road geometry. Among the road geometry information, the vehicle pitch angle influenced by road slope and acceleration-deceleration is essential parameter used in pose estimation including the navigation system, advanced adaptive cruise control and others on sag road. Although the road slope data is essential parameter, the method measuring the parameter is not commercialized. The digital map including the road geometry data and high-precision DGPS system such as DGPS(Differential Global Positioning System) based RTK(Real-Time Kinematics) are used unusually. In this paper, low-cost cascade extended Kalman filter(CEKF) based road slope estimation method is proposed. It use cascade two EKFs. The EKFs use several measured vehicle states such as yaw rate, longitudinal acceleration, lateral acceleration and wheel speed of the rear tires and 3 D.O.F(Degree Of Freedom) vehicle dynamics model. The performance of proposed estimation algorithm is evaluated by simulation based on Carsim dynamics tool and T-car based experiment.

Optimal Traffic Information (최적교통정보)

  • Hong, You-Sik;Park, Jong-Kug
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.76-84
    • /
    • 2003
  • Now days, It is based on GIS and GPS, it can search for the shortest path and estimation of arrival time by using the internet and cell phone to driver. But, even though good car navigation system does not create which is the shortest path when there average vehicle speed is 10 -20 Km. Therefore In order to reduce vehicle waiting time and average vehicle speed, we suggest optimal green time algorithm using fuzzy adaptive control, where there are different traffic intersection length and lane. In this paper, it will be able to forecast the optimal traffic information, estimation of destination arrival time, under construction road, and dangerous road using internet.