• Title/Summary/Keyword: Vehicle Sensor

Search Result 1,329, Processing Time 0.03 seconds

A Design of Vehicle Management System Apply Most Network And Sensor (MOST 네트워크와 센서를 활용한 차량 관리 시스템 설계)

  • Lee, Hyoun-Sup;Kim, Jin-Deog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.08a
    • /
    • pp.95-98
    • /
    • 2008
  • The vehicle has many technique change from The requirement of the safety the energy environment and convenience dimension is an enlargement toe. This is keeping changing the paradigm of the vehicle industry rapidly. The change to be technical such brought the intelligence of the former control device. And this organizes a sensor network among each systems and makes new traffic system. This paper a standard framework based on Sensor. We call it Vehicle Management System. The VMS used MOST network and It is able to make the stability of the component swap time or vehicle order the greatest.

  • PDF

A development of Intelligent Parking Control System Using Sensor-based on Arduino

  • LIM, Myung-Jae;JUNG, Dong-Kun;KWON, Young-Man
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.2
    • /
    • pp.29-34
    • /
    • 2021
  • In this paper, for efficient parking control, in an Arduino environment, an intelligent parking control prototype was implemented to provide parking control and parking guidance information using HC-SR2O4 and RC522. The main elements of intelligent parking control are vehicle recognition sensors, parking control facilities, and integrated operating software. Whether the vehicle is parked on the parking surface may be confirmed through sensor or intelligent camera image analysis. Parking control equipment products include parking guidance and parking available display devices, vehicle number recognition cameras, and intelligent parking assistance systems. This paper applies and implements ultrasonic sensors and RFID concepts based on Arduino, recognizes registered vehicles, and displays empty spaces. When a vehicle enters a parking space to handle this function, the automatic parking management system distinguishes the registered vehicle from the external vehicle through the RC522 sensor. In addition, after checking whether the parking slot is empty, the HC-SR204 sensor is displayed through the LED so that the driver can visually check it. RFID is designed to check the parking status of the server in real time and provide the driver with optimal route service to the parking slot.

3-Dimensional Analysis of Magnetic Road and Vehicle Position Sensing System for Autonomous Driving (자율주행용 자계도로의 3차원 해석 및 차량위치검출시스템)

  • Ryoo Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.75-80
    • /
    • 2005
  • In this paper, a 3-dimensional analysis of magnetic road and a position sensing system for an autonomous vehicle system is described. Especially, a new position sensing system, end of the important component of an autonomous vehicle, is proposed. In a magnet based autonomous vehicle system, to sense the vehicle position, the sensor measures the field of magnetic road. The field depends on the sensor position of the vehicle on the magnetic road. As the rotation between the magnetic field and the sensor position is highly complex, it is difficult that the relation is stored in memory. Thus, a neural network is used to learn the mapping from th field to the position. The autonomous vehicle system with the proposed position sensing system is tested in experimental setup.

Vehicle Orientation Estimation by Using Magnetometer and Inertial Sensors (3축 자기장 센서 및 관성센서를 이용한 차량 방위각 추정 방법)

  • Hwang, Yoonjin;Choi, Seibum
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.408-415
    • /
    • 2016
  • The vehicle attitude and sideslip is critical information to control the vehicle to prevent from unintended motion. Many of estimation strategy use bicycle model or IMU integration, but both of them have limits on application. The main purpose of this paper is development of vehicle orientation estimator which is robust to various vehicle state and road shape. The suggested estimator use 3-axis magnetometer, yaw rate sensor and lateral acceleration sensor to estimate three Euler angles of vehicle. The estimator is composed of two individual observers: First, comparing the known magnetic field and gravity with measured value, the TRIAD algorithm calculates optimal rotational matrix when vehicle is in static or quasi-static condition. Next, merging 3-axis magnetometer with inertial sensors, the extended Kalman filter is used to estimate vehicle orientation under dynamic condition. A validation through simulation tools, Carsim and Simulink, is performed and the results show the feasibility of the suggested estimation method.

A Study on Efficient Vehicle Classification based on 3-Piezo Sensor AVC SYSTEM (3-Piezo 센서 기반 교통량 조사시스템의 차종분류방식에 대한 연구)

  • Cho, Sung-Yun;Lee, Dong-Gyu;Ruy, Seung-Ki
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.25-31
    • /
    • 2013
  • The AVC System which has operated in Highways has two-piezo sensors. In this system the piezo sensors are installed on parally each other this configuration has a defect about diversion driving and sensor damage. In this reserch, 3-Sensor AVC algorithm has been proposed which is supported enhance accuracy of the vehicle classification rate compare with usual 2-Sensor systems. This algorithm is allowed to calculate wheel tread, wheel width. The third inclinded piezo sensor can detec twheel tread, wheel width using signal processing. 3-Sensor AVC has been installed in real highway and the outcome performance has been proof.

A Path Navigation Algorithm for an Autonomous Robot Vehicle by Sensor Scanning (센서 스캐닝에 의한 자율주행로봇의 경로주행 알고리즘)

  • Park, Dong-Jin;An, Jeong-U;Han, Chang-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.147-154
    • /
    • 2002
  • In this paper, a path navigation algorithm through use of a sensor platform is proposed. The sensor platform is composed of two electric motors which make panning and tilting motions. An algorithm for computing a real path and an obstacle length is developed by using a scanning method that controls rotation of the sensors on the platform. An Autonomous Robot Vehicle(ARV) can perceive the given path by adapting this algorithm. A sensor scanning method is applied to the sensor platform for using small numbers of sensor. The path navigation algorithm is composed of two parts. One is to perceive a path pattern, the other is used to avoid an obstacle. An optimal controller is designed for tracking the reference path which is generated by perceiving the path pattern. The ARV is operated using the optimal controller and the path navigation algorithm. Based on the results of actual experiments, this algorithm for an ARV proved sufficient for path navigation by small number of sensors and for a low cost controller by using the sensor platform with a scanning method.

The Development of Sensor System and 3D World Modeling for Autonomous Vehicle (무인 차량을 위한 센서 시스템 개발 및 3차원 월드 모델링)

  • Kim, Si-Jong;Kang, Jung-Won;Choe, Yun-Geun;Park, Sang-Un;Shim, In-Wook;Ahn, Seung-Uk;Chung, Myung-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.531-538
    • /
    • 2011
  • This paper describes a novel sensor system for 3D world modeling of an autonomous vehicle in large-scale outdoor environments. When an autonomous vehicle performs path planning and path following, well-constructed 3D world model of target environment is very important for analyze the environment and track the determined path. To generate well-construct 3D world model, we develop a novel sensor system. The proposed novel sensor system consists of two 2D laser scanners, two single cameras, a DGPS (Differential Global Positioning System) and an IMU (Inertial Measurement System). We verify the effectiveness of the proposed sensor system through experiment in large-scale outdoor environment.

Implement of Vehicle Sensor System Using Wireless Communication and Mobile Device (무선통신과 모바일 기기를 이용한 차량용 센서 시스템 구현)

  • Moon, Byung-Hyun;Jin, Yonng-Seok;Ryu, Jeong-Tak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.2
    • /
    • pp.51-58
    • /
    • 2009
  • In this paper, a system which uses Bluetooth and Zigbee wireless communication and mobile device is designed. The temperature within vehicle and the distance betweeen the vehicle and the obstacle is measured by ultrasonic sensor system. The measured data is sent to the mobile PDA and displayed to assist safe driving.

A Methodology for Estimating Section Travel Times Using Individual Vehicle Features (개별차량의 고유특성을 이용한 구간통행시간 산출기법 개발)

  • O, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.1
    • /
    • pp.83-92
    • /
    • 2005
  • This study if the first trial toward realizing a new methodology for vehicle re-identification based on heterogeneous sensor systems. A major interest of the author is how to effectively utilize information obtained from different sensors to derive accurate and reliable section travel times. The 'blade' sensor that is a newly developed sensor for capturing vehicle wheel information and the existing square loop sensor are employed to extract the inputs of the proposed vehicle re-identification algorithm. The fundamental idea of the algorithm developed in this study, which is so called 'anonumous vehicle re-identification,' it to match vehicle features obtained from both sensors. The results of the algorithm evaluation reveal that the proposed methodology could be successfully implemented in the field. The proposed methodology would be an invaluable tool for operating agencies in support of traffic monitoring systems and traveler information systems.

A Study of Vehicle's Sensor Signal Monitoring and Control Using Zigbee Wireless Communication and Web-based Embedded System (지그비 무선통신과 웹 기반의 임베디드 시스템을 이용한 자동차 센서신호 감시 및 제어에 관한 연구)

  • Yang, Seung-Hyun;Lee, Suk-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.67-74
    • /
    • 2009
  • In this paper, we constructed Embedded web-server to be monitored and controlled for intelligent vehicle on the base of embedded system and Zigbee wireless communication. By interfacing main controller and embedded system with ECU including every information of vehicle, it is possible to monitor the cruising information of vehicle, and sensor signal added to inside and outside of vehicle is transferred to embedded system through Zigbee communication. Web-server is constructed using embedded system, that's why the access to vehicle is possible using PC or mobile instrument, and the real-time check and control of vehicle is possible as well.