• Title/Summary/Keyword: Vehicle Running Speed

Search Result 290, Processing Time 0.027 seconds

An Analysis of Running Safety for Railway Vehicle Depending on Actual Track Conditions (실제선로 조건에 따른 철도차량의 주행안전성 해석)

  • Kim, Yong-Won;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.983-988
    • /
    • 2009
  • When the railway vehicle passing through curves & transitions, the running speed must improve by proposing the practical standard about maximum running possibility speed of each section on existing line considering running safety. In this paper, when the railway vehicle passing through curves of actual track conditions (Namsunghyun-Chungdo up & down lines), the effect that has influence on running safety is examined to devise the high speed of vehicle which passing through curves which risk of derailment is high. The running safety analysis is performed that running speed by curve radius improves 5-20% compared with existing speed under actual track conditions. In result of the running safety analysis, in case the speed condition is fewer than 15% compared with existing speed, the derailment coefficient and unloading ratio are within acceptable level. so we could confirm possibility of speed improvement on the whole Namsunghyun-Chungdo up & down lines.

Dynamic analysis of metro vehicle traveling on a high-pier viaduct under crosswind in Chongqing

  • Zhang, Yunfei;Li, Jun;Chen, Zhaowei;Xu, Xiangyang
    • Wind and Structures
    • /
    • v.29 no.5
    • /
    • pp.299-312
    • /
    • 2019
  • Due to the rugged terrain, metro lines in mountain city across numerous wide rivers and deep valleys, resulting in instability of high-pier bridge and insecurity of metro train under crosswind. Compared with the conditions of no-wind, crosswind triggers severer vibration of the dynamic system; compared with the short-pier viaduct, the high-pier viaduct has worse stability under crosswind. For these reasons, the running safety of the metro vehicle traveling on a high-pier viaduct under crosswind is analyzed to ensure the safe operation in metro lines in mountain cities. In this paper, a dynamic model of the metro vehicle-track-bridge system under crosswind is established, in which crosswind loads model considering the condition of wind zone are built. After that, the evaluation indices and the calculation parameters have been selected, moreover, the basic characteristics of the dynamic system with high-pier under crosswind are analyzed. On this basis, the response varies with vehicle speed and wind speed are calculated, then the corresponding safety zone is determined. The results indicate that, crosswind triggers drastic vibration to the metro vehicle and high-pier viaduct, which in turn causes running instability of the vehicle. The corresponding safety zone for metro vehicle traveling on the high-pier is proposed, and the metro traffic on the high-pier bridge under crosswind should not exceed the corresponding limited vehicle speed to ensure the running safety.

Running Safety Analysis of Railway Vehicle passing through Curve depending on Rail Inclination Change (레일 경좌 변화에 따른 곡선부 통과열차의 주행안전성 해석)

  • Kim, Moon Ki;Eom, Beom Gyu;Lee, Hi Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.199-208
    • /
    • 2013
  • So far today, there is a speed limit by the radius of curve based on operation regulation in domestic railway, however a study for the maximum running speed at the curved section without any derailment would be necessary. The two major factors related to the running safety of railway vehicle are classified as the railway vehicle condition and the track condition. In terms of the rail inclination among many other factors, the determination of rail inclination within the possible limit is necessary for the geometrical structure of the optimum track. The disregard of the geometrical parameter related to the rail inclination may cause a serious problem to the running safety of railway vehicle. This study is focusing on the analyzing of running safety regard to the change of rail inclination among the many other parameters to improve derailment safety, so that there is an affection analysis of the running safety regard to the change of rail inclination in the ideal and geometric track condition. Also There is an affection analysis of the running safety regard to the simultaneous change of rail inclination and the running speed at the curved section. According to analysis results of running safety, In case that the left and right rail inclination are 1/40, the running safety of this condition defined than other conditions. Also, the rail inclination of conventional lines is 1/40, Therefore, the railway vehicle passing through curve is safe when the railway vehicle runs in conventional lines.

Vehicle Noise Status and Characteristics (자동차소음 현황과 특성)

  • Lee, J.W.;Park, J.C.;Kang, Daejoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1249-1254
    • /
    • 2004
  • The road traffic noise becomes aggravated due to the rapid increase of motor vehicles. It has a great effect ell the dwelling environment. We Investigated characteristics and sources of the motor vehicle noise through grasping the status of the motor vehicle noise. Traffic noise results from the collective contribution of the noise produced by individual motor vehicles. The motor vehicle noise varies enormously depending upon its type and mode of operation. This Paper is concerned with the relationship between the vehicle running speed and the noise level under accelerated and steady running.

A Dynamic Analysis of Rotations at the center of Vehicle Running High Speed KTX Train on the PSC Box Bridges (PSC 교량 위를 고속주행 중인 KTX 전동차의 중심회전각 동적해석)

  • Oh, Soon-Tack;Lee, Dong-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.59-67
    • /
    • 2014
  • A dynamic analysis is carried out to provide an evaluation method of running safety for a PSC box bridge located on the Gyung-Bu high speed railway. The numerical models of bridge and train vehicle are developed in detail with corresponding interaction system. Three dimensional skeleton element model of PSC box bridge and 38-degree-of-freedom of vehicle are adopted from the existing properties of KTX bridge and train vehicle. Analysed three direction rotations of vehicle on the bridge and ground tracks are compared for running speeds up to 500 km/h with 10 km/h constant increments. The comparison of the rotations will be an improved evaluation method of Running Safety in stead of the existing standard method.

Running safety of metro train over a high-pier bridge subjected to fluctuating crosswind in mountain city

  • Zhang, Yunfei;Li, Jun;Chen, Zhaowei;Xu, Xiangyang
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.207-222
    • /
    • 2020
  • Due to the rugged terrain, metro lines in mountain city across numerous wide rivers and deep valleys, resulting in instability of high-pier bridge and insecurity of metro train subjected to fluctuating crosswind. To ensure the safe operation in metro lines in mountain cities, running safety of the metro train over the high-pier bridge under crosswind is analyzed in this paper. Firstly, the dynamic model of the wind-train-bridge (WTB) system is built, in which the speed-up effect of crosswind is fully considered. On the basis of time domain analysis, the basic characteristics of the WTB system with high-pier are analyzed. Afterwards, the dynamic responses varies with train speed and wind speed are calculated, and the safety zone of metro train over a high-pier bridge subjected to fluctuating crosswind in mountain city is determined. The results indicate that, fluctuating crosswind triggers drastic vibration to the metro train and high-pier bridges, which in turn causes running instability of the train. For this reason, the corresponding safety zone for metro train running on the high-pier is proposed, and the metro traffic on the high-pier bridge should be closed as the mean wind speed of standard height reaches 9 m/s (15.6 m/s for the train).

Running safety evaluation of tilting vehicle when speed-up in curved track of conventional line (기존선 곡선선로에서 한국형 틸팅열차의 속도향상시 주행안전성 평가)

  • Ham, Young-Sam;Lee, Dong-Hyong;Kwon, Seok-Jin;Seo, Jung-Won;Jun, Hyun-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.25-29
    • /
    • 2010
  • Safety of railroad is result of reliability which is received from test & evaluation of system. Railroad system is consisted of various sub system such as vehicle, supply of electric power, signal, communication, rail track construction, operation. To secure safety of railroad, evaluation about parts, assembly, sub system, whole system etc.. that compose railroad is essential. In this paper, I wish to describe for results that analyze korean tilting vehicle's derailment coefficient developed by national research achievement. Confirmed that is possible even if speed up, curved line department running speed that estimate korean tilting vehicle's running safety in curved line track of Jungang Line about 20 km/h than present operating speed.

  • PDF

The Effect of KTX Vehicle Size Adjustment on High-Speed Railway Bridge Vibration : Numerical Study (수치해석을 통한 KTX 객차 길이 조정이 고속철도교량의 동적거동 특성에 미치는 영향 연구)

  • Shin, Jeong-Ryol;Kim, Hyun-Min;Sohn, Hoon;Yun, Chung-Bang
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.854-863
    • /
    • 2008
  • A high attention has been paid on the running safety of Korean high-speed train, KTX. In running of KTX on bridge, the running unsafety problem issued from a resonance phenomenon of bridge, which was usually caused by the periodic wheel-loads of train. Therefore, many researches on this running safety of train on bridge have been conducted by domestic or foreign researchers. In this paper, for PSC box-girder bridge which is the representative high-speed railway bridge type, some numerical analyses on the dynamic characteristics of bridge with the non-periodic wheel-loads through vehicle size adjustment were performed. These numerical analyses shows the fact that the resonance phenomenon on bridge was mitigated through vehicle size adjustment. Additional numerical analyses on the vibration reduction of bridge in accordance with the location of size-adjusted vehicle were performed. From these results, it was represented that the adjustment of vehicle size has an effect on the running safety of train as well as the ride comfort.

  • PDF

Preview Control of High Mobility Tracked Vehicle Suspension

  • Kim, Yoon-Sun;Park, Young-Jin;Kwak, Byung-Hak
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.174.1-174
    • /
    • 2001
  • The role of suspension system in tracked vehicles cannot be overestimated because the driving and running conditions of such vehicles are very severe. It reduces the vibration and shock which are generated by road profile in running condition. As the tracked vehicle's running speed increases, more undesired vibrations can be generated by road profile particularly in the situation of field running. Because, the excessive vibration can harm the operation ability of crewmen and stability of complex equipments, the maximum running speed is limited. In this study, to improve the performance of the tracked vehicle system, we examined the feasibility of using the active preview control for the tracked vehicle´s suspension system. First, we developed ...

  • PDF

Vehicle Running Characteristic Simulator using Induction Motor (유도전동기를 이용한 차량주행특성 시뮬레이터)

  • Byun, Yeun-Sub;Kim, Young-Chol;Mok, Jei-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1903-1914
    • /
    • 2011
  • In this paper, we propose vehicle running characteristic simulator. The developed simulator is configured by two induction motors which are directly coupled with each other. One motor is to simulate the vehicle drive and another motor is to simulate the vehicle dynamic load including running resistance, gradient resistance and adhesive characteristics between rail and wheel. The running characteristics of vehicle are modeled by numerical formulas. These are programed by software of embedded controller. Thus, it is possible to change several running characteristics during the running test freely and instantly. To evaluate the feasibility of the simulator, the experiments on slip and adhesion coefficient are performed. Additionally the adhesion control and speed control of vehicle are tested with simulator. Experimental results show that the simulator can produce the driving characteristics similar to the vehicle system.