• Title/Summary/Keyword: Vehicle Operational Control

Search Result 113, Processing Time 0.03 seconds

A study on control method of DPF regeneration according to operation characteristics of Light Tactical Vehicle (전술차량 운용 특성에 따른 DPF 재생 제어 개선방안 연구)

  • Kim, Seon-Jin;Park, Jin-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.689-695
    • /
    • 2018
  • This paper presents the means of controlling the regeneration of a diesel particulate filter (DPF) that is mounted on tactical vehicles to satisfy exhaust gas standards. The DPF captures particulate matter in the exhaust gas and combusts the captured particulate matter. This process is regeneration, which is essential to the normal performance of the DPF. Bad regeneration causes degradation of vehicle performance; worse, it can lead to a vehicle fire. DPF regeneration is performed by control logic. If the regeneration control logic does not properly reflect the operating characteristics of the vehicle, DPF regeneration may not occur. Consequently, it is very important to ensure the DPF operates properly by reflecting the operating characteristics of the tactical vehicle. This study analyzes the operational characteristics of a tactical vehicle and the DPF, and adds proper DPF regeneration control logic. Additionally, this study is intended to simultaneously improve the additional problems that may occur from operating under the added regeneration control logic.

KOMPSAT-2 AOCS Control Mode & Power Safe Mode Design

  • Rhee, Seung-Wu;Kim, Hak-Jung;Lee, Joo-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.77-88
    • /
    • 2005
  • KOMPSAT-2 is the second Korean earth observation satellite after KOMPSAT-l: the 1 meter GSD cartographic capability and planning to launch at the end of 2005 by ROKOT launch vehicle. The dedicated AOCS operational modes are designed for KOMPSAT-2 based on KOMPSAT-l experience All of AOCS operational modes requires gyro information. To compensate this drawback, Power Safe Mode is designed and implemented. Successfully AOCS on-board software is developed and extensively verified through a nonlinear simulation process. The simulation results of Power Safe Mode and Science Fine Submode are provided to demonstrate its functionality as well as its performance.

Control of the Operational Vehicles for Personal Rapid Transit System (개인고속이동 시스템의 차량운행에 대한 제어)

  • Lee, Jun-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.947-950
    • /
    • 2008
  • PRT(Personal Rapid Transit) systems requires very short headways to increase the line capacity and a very reliable vehicle control algorithm for avoidance of the impact between vehicles. In this paper a brake curves (or speed patterns) for PRT system that make it possible the effective vehicle control and a collision avoidance algorithm are introduced. For the simulations and the evaluations of the proposed algorithm a combined simulation platform that consists of Labview Simulation Interface Toolkit and Matlab/Simulink and a specific hardware configuration are employed.

  • PDF

An Experimental Study on Coordinates Tracker Realization for EOTS Slaved to the Radar of a Helicopter (전자광학추적장비의 좌표추적기 구현 및 헬리콥터 탑재 레이더 연동시험에 관한 연구)

  • Jung Seul;Park Ju-Kwang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.369-377
    • /
    • 2005
  • This paper describes the realization of a coordinates tracking algorithm for an EOTS (Electro-Optical Tracking System). The EOTS stabilizes the image sensors, tracks targets automatically, and provides navigation capability for vehicles. The coordinates tracking algorithm calculates the azimuth and the elevation angle of an EOTS using the inertial navigation system and the attitude sensors of the vehicle, so that LOS designates the target coordinates which are generated by a Radar. In the error analysis, the unexpected behaviors of an EOTS due to the time delay and deadbeat of the digital signals of the vehicle equipments are anticipated and the countermeasures are suggested. The application of this algorithm to an EOTS will improve the operational capability by reducing the time which is required to find the target and support flight especially in the night time flight and the poor weather condition.

A Study on OMS/MP of a Combat Vehicle Mounted with Weapon Systems for Power and Energy Control Strategy Development and its Application (무기탑재 전투차량의 임무부하분석을 위한 OMS/MP 방법론과 적용 연구)

  • Yoo, Sam-Hyeon;Lee, Jong-Woo;Lee, Min-Hyung;Lee, Seung Min;Jang, Myeong-Eon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.48-55
    • /
    • 2013
  • To obtain the requirements of capability and analyze mission loads for weapon systems which are in process of development, Operational Mode Summary/Mission Profile(OMS/MP) should be documented in advance. In this paper, we have proposed a systematic and practical OMS/MP model processes of a weapon mounted combat vehicle for analyzing power and energy strategy. The wartime and peacetime OMS/MP of a hybrid wheeled combat vehicle which is mounted with an anti-tank guided weapon(ATGW) is also presented as its application.

Study on Vehicle Infra System of Bimodal Tram (바이모달트램 차량인프라시스템에 관한 연구)

  • Lee, Kang-Won;Yoon, Hee-Taek;Park, Young-Kon;Hwang, Eui-Kyeong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2147-2152
    • /
    • 2011
  • This study of bimodal integration management system in conjunction with the tram and the tram cars bimodal integrated management system that occupies a part of the system to perform its role as a bimodal tram vehicle configuration, a device for the vehicle's infrastructure ryureul development and it is aimed to build on the vehicle. Bimodal tram vehicle infrastructure systems, internal and external information of the larger vehicles, and vehicles used to collect information for its own part and the integrated operations management center, or providing partial information from the station and collect/provide for the transfer of information to the communication part consists In this study, the core of these devices, the configuration of the vehicle infrastructure systems for the overall management and control of vehicles operating a computer's central processing device, vehicle infrastructure systems that make it manages and stores all jangchiryu Integrated Operations Management Center is reporting. In addition, seamless integration with operational management center for interactive communication in a vehicle mounted communications devices to maintain the best condition to manage. Current general traffic management system in a similar terminal device being used, but bimodal tram vehicles operating the computer of the vehicle operates the infrastructure to configure the devices around the one to configure the system in terms of step enhanced the active type, the operating terminal unit of inter active type. In this study, considering the future alignment of the accounting fee system, the expansion of the system reliability and stability around the activities that are underway.

  • PDF

A Verification & Validation Methodology Study on the Development of A-SMGCS (A-SMGCS 개발에 따른 적정성 평가와 검증방법에 관한 연구)

  • Hong, Seung-Beom;Choi, Seung-Hoon;Cho, Young-Jin;Choi, Youn-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.2
    • /
    • pp.81-86
    • /
    • 2014
  • In this paper, we states the verification and validation methodology for the modular system of A-SMGCS which defined in the ICAO Manual on Advanced Surface Movement Guidance and Control Systems. Such systems aim to maintain the declared surface movement rate under all weather conditions while maintaining the required level of safety. With the complete concept of an A-SMGCS, air traffic controllers, vehicle drivers, flight crews, and are assisted with surface operations in terms of surveillance, control, routing/planning and guidance tasks. A-SMGCS verification and validation for the development of Real Time Simulation, shadow mode trials, operational trials are conducted through three methods. In this study, the characteristics and the need for such a verification method was examined.

Conceptual Design for a Diagnosis System of Vehicle Performance using the Satellite Telemetry Technology (위성 원격측정기술을 이용한 차량 성능진단시스템 개념 설계)

  • Eun, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4576-4582
    • /
    • 2010
  • Because most of vehicle provide users with the very limited information regarding the performance of vehicle, it is quite difficult for users to drive vehicles safe, and to maintain and repair vehicles properly. In order to solve the above-mentioned problems, several ways of research and development for the vehicle control and diagnosis system have been recently carried out. However, a lot of complicated problems and difficulties were arising due to the complexity of the developed system, degradation of the reliability for the vehicle performance control system, operational malfunction and so on. In this paper, for the purpose of solving the difficult problems and technical limitations, a system for vehicle performance which might be able to diagnose the reliability of vehicle performance by measuring and analyzing the real time performance of vehicle using the satellite telemetry technology was conmance oly defined and deehiced.hihe results derived from the cormance ofdvehiclactivities in this study shall be used as not only fundamental data but also materials for the detailed design for the implementation of vehicle performance diagnosis system in the near future.

Motion Control of an AUV Using a Neural-Net Based Adaptive Controller (신경회로망 기반의 적응제어기를 이용한 AUV의 운동 제어)

  • 이계홍;이판묵;이상정
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.91-96
    • /
    • 2001
  • This paper presents a neural net based nonlinear adaptive controller for an autonomous underwater vehicle (AUV). AUV's dynamics are highly nonlinear and their hydrodynamic coefficients vary with different operational conditions, so it is necessary for the high performance control system of an AUV to have the capacities of learning and adapting to the change of the AUV's dynamics. In this paper a linearly parameterized neural network is used to approximate the uncertainties of the AUV's dynamics, and a sliding mode control is introduced to attenuate the effects of the neural network's reconstruction errors and the disturbances of AUV's dynamics. The presented controller is consist of three parallel schemes; linear feedback control, sliding mode control and neural network. Lyapunov theory is used to guarantee the asymptotic convergence of trajectory tracking errors and the neural network's weights errors. Numerical simulations for motion control of an AUV are performed to illustrate to effectiveness of the proposed techniques.

  • PDF

Autonomous Unmanned Flying Robot Control for Reconfigurable Airborne Wireless Sensor Networks Using Adaptive Gradient Climbing Algorithm (에어노드 기반 무선센서네트워크 구축을 위한 적응형 오르막경사법 기반의 자율무인비행로봇제어)

  • Lee, Deok-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.2
    • /
    • pp.97-107
    • /
    • 2011
  • This paper describes efficient flight control algorithms for building a reconfigurable ad-hoc wireless sensor networks between nodes on the ground and airborne nodes mounted on autonomous vehicles to increase the operational range of an aerial robot or the communication connectivity. Two autonomous flight control algorithms based on adaptive gradient climbing approach are developed to steer the aerial vehicles to reach optimal locations for the maximum communication throughputs in the airborne sensor networks. The first autonomous vehicle control algorithm is presented for seeking the source of a scalar signal by directly using the extremum-seeking based forward surge control approach with no position information of the aerial vehicle. The second flight control algorithm is developed with the angular rate command by integrating an adaptive gradient climbing technique which uses an on-line gradient estimator to identify the derivative of a performance cost function. They incorporate the network performance into the feedback path to mitigate interference and noise. A communication propagation model is used to predict the link quality of the communication connectivity between distributed nodes. Simulation study is conducted to evaluate the effectiveness of the proposed reconfigurable airborne wireless networking control algorithms.