• Title/Summary/Keyword: Vehicle Load

Search Result 1,446, Processing Time 0.027 seconds

The Trend of System Level Thermal Management Technology Development for Aero-Vehicles (항공기 시스템 레벨 열관리 기술개발 동향)

  • Kim, Youngjin;Son, Changmin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • Modern aircraft is facing the increase of power demands and thermal challenges. In accordance with the application of more electric technology and advanced mission requirement, aircraft system requires increase of power generation and it cause increase of internal heat generation. Simultaneously, restrictions have significantly been imposed to the thermal management system. Modern aircraft must maintain low radar observability and infra-red signature. In addition, new composite aircraft skins have reduced the amount of heat that can be rejected to the environment. The combination of these characteristics has increased the challenges faced by thermal management. In order to mitigate the thermal challenges, the concept of system level thermal management should be applied and new modeling and simulation tools need to be developed. To develop and utilize system level thermal management technology, three key points are considered. Firstly, the performance changes of subsystems and components must be assessed at an integrated thermal system. It is because that each subsystem and component interacts with other subsystems or components and it can directly effects on overall system performance. Secondly, system level thermal management requirements and solutions must be evaluated early in conceptual design process as vehicle and propulsion system configuration decisions are being made. Finally, new component level thermal management technologies must focus on reducing heat generation and increasing the availability of heat sinks.

Anti-Slip Control of Railway Vehicle Using Load Torque Disturbance Observer (부하토크외란관측기를 이용한 철도모의장치의 Anti-Slip 제어)

  • Jang, Jin-Hyog;Hwang, Lak-Hun;Kim, Young-Choon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1064-1071
    • /
    • 2006
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control based on disturbance observer and sensor-less vector control. The numerical simulation and experimental results point out that the proposed readhesion control system has the desired driving wheel torque response for the tested bogie system of electric coach. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

  • PDF

The Study on Performance and Emission of CNG as a Potential Fuel in Kore (한국의 잠재적인 연료인 CNG연료의 성능 및 배출물에 관한 연구)

  • Cho, Haeng-Muk;Chauhan, Bhupendra Singh
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.39-43
    • /
    • 2009
  • Gasoline engine have proved its utility in light, medium and heavy duty vehicle in every sector of the world community. The concern about long term availability of petroleum and the increasing threat for the environment by the increasing load of vehicular emission, compel the technology to upgrade itself for meeting the challenges. CNG is environmentally clean alternative to the existing SI Engines with out much change in the hardware. Many researchers have found this as a potential substitute to meet the energy requirement. Higher octane number and higher self ignition temperature make it a good gaseous fuel. Although power output is slightly lesser than the gasoline it's thermal efficiency is better than the gasoline for the same SI Engine. Results showed that reduced CO, hydrocarbon emissions is a favorable outcome, with slight increase in NOx emission when compared with gasoline fuel to dual fuel mode in the existing SI Engines.

  • PDF

Methodology for Benefit Evaluation according to Maintenance Method and Timing of National Highway Pavement Section (국도포장 유지보수 공법 및 시기에 따른 편익산정 방안)

  • Do, Myungsik;Kwon, Soo Ahn;Choi, Seunghyun
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.91-99
    • /
    • 2013
  • PURPOSES : This study aims at proposing the methodology for benefit evaluations in pavement maintenance methods and timings using KoPMS(Korean Pavement Management System) software which was developed for efficient pavement management. METHODS : This study classified pavement sections into 4 clusters considering AADT(Annual Average Daily Traffic) and ESAL(Equivalent Single-Axle Load) using cluster analysis and used the deterioration models in each cluster. Increased user costs due to pavement deterioration as time goes by and agent costs for maintenance were estimated. Based on deterioration model and KoPMS software, Methodology for benefit evaluation was proposed in pavement maintenance methods and with/without implementation using real pavement section data. RESULTS : This study verified that considering agent costs only would be constrained to decide pavement maintenance methods and timings, and ascertained that decision making with agent and user costs would be effective. In addition, this study revealed that pavement maintenance methods and timings can be affected by AADT and ESAL and frequent pavement maintenances can be more efficient for benefits in pavement sections with more AADT and ESAL. Also this study found that user costs would be more affected to decision making than agent costs. Moreover, Delay of conducting pavement maintenance caused increased vehicle operating costs and environmental costs because of poor conditions of pavements. CONCLUSIONS : This study proposed LCCA and benefit estimation methodology of pavement with considering agent and user costs. The results of this study can be used for baseline data of efficient pavement asset management.

Optimal Joint Position in Concrete Pavement Slab over Skewed Box Culvert (수평으로 경사진 박스암거 위 콘크리트 포장 슬래브의 최적 줄눈위치)

  • Yeom, Woo Seong;Jeong, Ho Seong;Yan, Yu;Sohn, Dueck Soo;Lee, Jae Hoon;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.47-55
    • /
    • 2013
  • PURPOSES : The purpose of this study is to investigate the optimal joint positions which can minimize distresses of concrete pavement containing box culvert with horizontally skewed angles. METHODS : The concrete pavement containing the box culvert with different skewed angles and soil cover depths was modeled by 3 dimensional finite element method. The contact boundary condition was used between concrete and soil structures in addition to the nonlinear material property of soil in the finite element model. A dynamic analysis was performed by applying the self weight of pavement, negative temperature gradient of slab, and moving vehicle load simultaneously. RESULTS : In case of zero skewed angle ($0^{\circ}$), the maximum tensile stress of slab was the lowest when the joint was positioned directly over side of box culvert. In case there was a skewed angle, the maximum tensile stress of slab was the lowest when the joint passed the intersection between side of the box culvert and longitudinal centerline of slab. The magnitude of the maximum tensile stress converged to a constant value regardless the joint position from 3m of soil cover depth at all of the horizontally skewed angles. CONCLUSIONS : More reasonable and accurate design of the concrete pavement containing the box culvert can be possible based on the research results.

Reliability Analysis of Fatigue Truck Model Using Measured Truck Traffic Statistics (통행차량 특성을 반영한 강교량 피로설계트럭의 피로파괴 신뢰도해석)

  • Shin, Dong Ku;Kwon, Tae Hyung;Park, Young Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.211-221
    • /
    • 2007
  • A structural reliability analysis of fatigue truck model for fatigue failure of highway steel bridges was performed by applying the Miner's fatigue damage rule expressed as a function of various random variables affecting fatigue damage. Among the variables, the statistical parameters for equivalent moment, impact factor, and loadometer were obtained by analyzing recently measured domestic traffic data, whereas the parameters on fatigue strength, girder distribution factor, and headway factor of the measured data available in the literature were used. The effects of various fatigue truck models, fatigue life, ADTT, fatigue detail category, loadometer, and gross vehicle weight of fatigue truck on the reliability index of fatigue damage were analyzed. It is expected that the analytical results presented herein can be used as a basic background material in the calibration of both fatigue design truck and fatigue load factor of LRFD specification.

Changes of NPS Loading Rates by Landuse Changes in Resort Development (리조트 개발사업에서 토지이용 변화에 따른 비점오염물질 부하량 변동 산정)

  • Jung, Yong-Jun;Lee, Eun-Ju;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.8 no.4
    • /
    • pp.23-31
    • /
    • 2006
  • The nonpoint pollutants are originated from various land uses. Of the landuses, the development means the changes of the soil cover and the increases of imperviousness rate, which will increase the nonpoint pollutant emissions during a storm. Therefore, the Ministry of Environment in Korea has programed TPLMS(Total Pollution Load Management System) for four major large rivers to improve the water quality in rivers by controling the total pollutant loadings from the watershed area. The study area was forest landuse before development plan, however it is now changing to the resort. Some of the forest areas will be changed to parking lots, roads and buildings. The paved areas are highly polluted landuses because of high pollutant accumulation rate by vehicle activities during dry periods. Therefore, this research is achieved to determine the changes of pollutant loading rate by development plan and to provide the best management practices for controlling nonpoint pollutants.

  • PDF

Characteristics of Washed-off Pollutants and Dynamic EMCs in a Parking Lot and a Bridge during Storms (주차장 및 교량지역의 강우유출수내 비점오염물질의 특성 비교 및 동적 EMCs)

  • Kim, Lee-Hyung;Lee, Seonha
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.3
    • /
    • pp.248-255
    • /
    • 2005
  • Since the water quality of drinking water sources has been recognized as a big issue, the ministry of Environment in Korea is designing the total maximum daily load (TMDL) program for 4 major large rivers. The TMDL program can be successfully performed as controling the nonpoint pollutants from watershed area near the river. Of the various landuses in nonpoint pollution, parking lots and bridges are stormwater intensive landuses because of high imperviousness and high pollutant mass emissions from vehicular activities. Vehicle emissions from those areas include different pollutants such as heavy metals, oil and grease and particulates from sources such as fuels, brake pad and tire wear, etc. Especially the pollutant washed-off from the landuses are directly affecting to the river water quality. Therefore this research was conducted to understand the magnitude and nature of the stormwater emissions with the goal of quantifying stormwater pollutant concentrations and mass emission rates of pollutants from parking lot and bridges in Korea. In Kongju city areas, two monitoring sites were equipped with an automatic rainfall gages and an automatic flow meter for accumulating the useful data such as rainfall, water quality and runoff flow. This manuscripts will show the concentration changes during storm duration and EMCs to characterize the concentration profiles in different land uses. Also the first flush criteria will be suggested using dynamic EMCs. The definition of dynamic EMC is a new approach explaining the relationship of EMC and first flush effect.

Finite Element Analysis of the Tire Contact Problem (타이어 접지문제의 유한요소 응력해석)

  • Han, Y.H.;Kim, Y.H.;Huh, H.;Kwak, Y.K.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.820-830
    • /
    • 1989
  • The tire inflation and contact problem has been solved by a finite element method. The finite element formulation is derived from the equilibrium equations by the principle of virtual work in the form of an updated Lagrangian formulation for incremental analysis. Then, a contact formulation is added to the finite element formulation to calculate stress state of tire in contact with flat rigid road under the load due to the self-weight of a vehicle. In the finite element analysis, equations of effective material properties are introduced to analyze a plane strain model of the shell-like tire by considering the bending effect of reinforced steel cords. The proposed equations of effective material properties produced stress concentration around the edge of belt layers, which does not appear when other well-known equations of material properties are adopted. The result from the above algorithm demonstrates the validity of the formulation and the proposed equations for the effective elastic constants. The result fully interprets the cause of separation between belt layers by showing the stress concentration.

Experimental Study on the Dynamic Response of Box Girder Long-Span Bridges under Various Travelling Vehicles (다양한 차량주행에 의한 박스형 장대교량의 동적 응답에 관한 실험적 연구)

  • Lee, Rae-Chul;Lee, Sang-Youl;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.129-138
    • /
    • 2004
  • In this study we determine a dynamic analysis of the existing two-span prestressed concrete box girder bridge subjected to moving vehicle loads using the experimental measurements. The moving loads applied in this paper are classified as general travelling, suddenly brake, continuous travelling, reversely travelling and reversely travelling impact loads for increasing velocities. For each travelling load, we search dynamic behaviors and characteristic in various measuring point of box girder section. In addition, the three-dimensional numerical results analyzed by the developed finite element program using flat shell element with six degrees of freedom per a node are compared with the measured experimental data. Dynamic behaviors caused impact loads by suddenly braking, reversely travelling, are bigger than by general travelling in box girder. Three-dimensional numerical results are better than one-dimensional results.