• Title/Summary/Keyword: Vehicle Head Impact

Search Result 55, Processing Time 0.019 seconds

Vehicle-induced aerodynamic loads on highway sound barriers part1: field experiment

  • Wang, Dalei;Wang, Benjin;Chen, Airong
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.435-449
    • /
    • 2013
  • The vehicle-induced aerodynamic loads bring vibrations to some of the highway sound barriers, for they are designed in consideration of natural wind loads only. A field experiment is carried out with respect to three important factors: vehicle type, vehicle speed and the vehicle-barrier separation distance. Based on the results, the time-history of pressures is given, showing identical characteristics in all cases. Therefore, the vehicle-induced aerodynamic loads acting on the highway sound barrier are summarized as the combination of "head impact" and "wake impact". The head impact appears to have potential features, while the wake impact is influenced by the rotational flow. Then parameters in the experiment are analyzed, showing that the head impact varies with vehicle speed, vehicle-barrier separation distance, vehicle shape and cross-sectional area, while the wake impact is mainly about vehicle-barrier separation distance and vehicle length.

Analysis of Head Impact Test of the Passenger Air-Bag Module Assembly by LS-DYNA Explicit Code (LS-DYNA를 이용한 자동차 승객용 에어백 모듈의 헤드 충격 해석)

  • Kim, Moon-Saeng;Lim, Dong-Wan;Lee, Joon-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.88-94
    • /
    • 2006
  • In this study, the dynamic impact analysis for the passenger air-bag(PAB) module has been carried out by using FEM to predict the dynamic characteristics of vehicle ride safety against head impact. The impact performance of vehicle air-bag is directly related to the design parameters of passenger air-bag module assembly, such as the tie bar bracket's width and thickness, respectively, However, the product's design of PAB module parameters are estimated through experimental trial and error according to the designer's experience, generally. Therefore, the dynamic analysis of head impact test of the passenger air-bag module assembly of automobile is needed to construct the analytical methodology At first, the FE models, which are consist of instrument panel, PAB Module, and head part, are combined to the whole module system. Then, impact analysis is carried out by the explicit solution procedure with assembled FE model. And the dynamic characteristics of the head impact are observed to prove the effectiveness of the proposed method by comparing with the experimental results. The better optimized impact performance characteristics is proposed by changing the tie bracket's width md thickness of module. The proposed approach of impact analysis will provides an efficient vehicle to improve the design quality and reduce the design period and cost. The results reported herein will provide a better understanding of the vehicle dynamic characteristics against head impact.

Experimental Study and Finite Element Analysis about Vehicle Laminated Glass Subject to Headform Impact (머리모형 충돌에 의한 자동차 접합유리의 실험적 연구 및 유한요소해석)

  • Choi, Jihun;Oh, Wontek;Kim, Jonghyuk;Park, Jongchan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.374-379
    • /
    • 2017
  • In vehicle to pedestrian accidents, cracks occur in the vehicle laminated glass due to impact of a pedestrian's head. In this study, FMH(Free Motion Headform) was used to experiment on and analyze the crack patterns on a vehicle laminated glass that collides with an adult headform at speeds of 20 km/h, 30 km/h, and 40 km/h, respectively. Applying the acquired experimental data and material property of the vehicle laminated glass to the structural analysis program LS-Dyna, we could develop the FE model of vehicle laminated glass similar to real vehicle laminated glass. We could estimate the head impact velocity and pedestrian's vehicle impact velocity using the Madymo program.

Development of Non-Redirective Crash Cushion for Bridge Piers Considering Occupant Safety (탑승자 안전도를 고려한 교각 방호시설물 개발에 관한 연구)

  • Park, Jaehong;Sung, Jung Gon;Nam, Min Gyun;Yun, Duk Geun
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.120-126
    • /
    • 2018
  • The traffic accident types are largely classified into vehicle to vehicle accident, vehicle-to-person accident and single-vehicle. Especially, the single-vehicle accident types are severe when the vehicle crashed into road facilities such as bridge, piers, utility poles. The severity of single-vehicle accidents are ten times higher than that of all other accidents types. It is needed to consider to reduce accident severity. This study was conducted to develop crash worthy safety design facility to ensure the vehicle occupant safety. The simulation and the crash tests were conducted for assessment of the safety performance to check the criteria of CC2(Crash Cushion 2) level. THIV(Theoretical Head Impact Velocity) and PHD(Post-impact Head Deceleration) were used to assess occupant impact severity for crashes. The non-redirection collision test conditions for 900 kg and 1,300 kg-head on crash tests, 900 kg-1/4 offset crash tests, 1,300 kg-head on crash test with $15^{\circ}$angle were conducted. The simulation and experiment test result showed that THIV values were below 44 km/h criterion, PHD values were below the 20G. The development non-redirective crash cushion is expected to be used for the fixed object such as bridge piers for assuring occupant safety.

Safety Evaluation of Korean New Car Assessment Program - Side Impact (자동차 측면 충돌 안전도 평가 분석)

  • Shin, Jaeho;Yong, Gee Joong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.2
    • /
    • pp.12-17
    • /
    • 2014
  • The number of vehicle accidents related to the side impact has increased since 1990 in Korea, thus the side impact test has been performed as one of the major vehicle evaluations of the Korean New Car Assessment Program(KNCAP) in 2003. A total of 77 vehicles of eight different types(compact, small, semi-midsize, midsize, and large sedans and small, midsize, and large sports utility vehicles) were tested in side impact and side pole impact conditions. In this study, the head and thorax injury values(HICs and chest deflections) of the side impact tests performed between 2003 and 2013 were investigated in terms of vehicle type, test year, and test condition. The recent vehicles showed better safety performances(lower injury values) and similar injury patterns were obtained between side impact and pole side impact tests.

A Study on Driving Safety Evaluations Using Full Scale Crash Test Data of Curb (연석의 실물차량 충돌시험 데이터를 이용한 주행안전성 평가에 관한 연구)

  • Kim, Jong-Min;Noh, Kwan-Sub;Kim, Jang-Wook;Byeon, Ji-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.98-104
    • /
    • 2012
  • Current [Guideline for Installation and Management of Sidewalks and Safety Facilities on Roads] suggests that the types of curbs should be Barrier curb ($85^{\circ}$). Although Barrier curbs ($90^{\circ}$) were not specified in the guideline. The curbs installed on the roads currently are Barrier curbs ($90^{\circ}$) which are not specified in the installation standard. Therefore, it is critical to prepare for the installation standard of curbs by researching types of curbs and driving safety. This research have assessed the driving safety throughout Full Scale Crash Test according to type of curbs (Barrier curbs ($85^{\circ}$) and Barrier curbs ($90^{\circ}$)). Barrier curbs ($90^{\circ}$) showed higher figure in Theoretical head Impact Velocity, Post-impact Head Deceleration, Vehicle Damage when Crash, Passenger's Wounds Severity, and every other items than Barrier curbs ($85^{\circ}$). Barrier curbs ($85^{\circ}$) were found to have better Occupant Safety Index. Analysis of Behavior Using Full-Scale Crash Test showed difference depending on the Impact Condition between Barrier curbs ($85^{\circ}$) and Barrier curbs ($90^{\circ}$). Generally, Barrier curbs ($85^{\circ}$) were superior than Barrier curbs ($90^{\circ}$) in terms of protecting the passengers and vehicle damages. When an impact angle increases, Acceleration of Vehicle, Variations of Speed, and Contact Relationship between Wheels and Curbs, two types of curb showed similarity. However, if an impact of an angle decreases, Barrier Curbs ($85^{\circ}$) showed excellence in Driving Safety such as Acceleration of Vehicle, Variations of Speed, and Contact Relationship between Wheels and Curbs.

Vehicle-induced aerodynamic loads on highway sound barriers part 2: numerical and theoretical investigation

  • Wang, Dalei;Wang, Benjin;Chen, Airong
    • Wind and Structures
    • /
    • v.17 no.5
    • /
    • pp.479-494
    • /
    • 2013
  • The vehicle-induced aerodynamic loads bring vibrations to some of the highway sound barriers, for they are designed in consideration of natural wind loads only. As references to the previous field experiment, the vehicle-induced aerodynamic loads is investigated by numerical and theoretical methodologies. The numerical results are compared to the experimental one and proved to be available. By analyzing the flow field achieved in the numerical simulation, the potential flow is proved to be the main source of both head and wake impact, so the theoretical model is also validated. The results from the two methodologies show that the shorter vehicle length would produce larger negative pressure peak as the head impact and wake impact overlapping with each other, and together with the fast speed, it would lead to a wake without vortex shedding, which makes the potential hypothesis more accurate. It also proves the expectation in vehicle-induced aerodynamic loads on Highway Sound Barriers Part1: Field Experiment, that max/min pressure is proportional to the square of vehicle speed and inverse square of separation distance.

Headform Impact Test for Pedestrian Safety using Domestic Vehicles (국산자동차의 보행자 보호를 위한 머리모형 충격시험)

  • Yong, Boo-Joong;Kim, Si-Woo;Yoon, Kyong-Han
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.8-13
    • /
    • 2008
  • Since hundreds thousands of pedestrians are killed or injured in car accidents every year, a variety of research efforts have been performed to protect pedestrians in pedestrian-vehicle crashes. The IHRA reports that injuries on the child head, the adult head, and the adult lower leg/knee are the most critical in the crashes. Identifying the current status of international activities on pedestrian protection, this study, in particular, carries out headform impact test using selected domestic vehicles categorized by three groups - Sedan, SUV (Sport Utility Vehicle), and 1 Box (One Box) Vehicle. According to the valuable findings from the test results, this paper proposes a methodology under which the Korean Technical Regulation for protecting pedestrians in pedestrian-vehicle crashes will be developed.

A Study on Crash Analysis of Vehicle and Guardrail using a LS-DYNA Program (LS-DYNA 프로그램을 이용한 차량과 가드레일의 충돌해석에 관한 연구)

  • Kwon, O-Hyun;Baek, Se-Ryong;Yoon, Jun-Kyu;Lim, Jong-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.179-186
    • /
    • 2016
  • A study is to research crash barriers for vehicles that prevent road breakaway of vehicles and protect car passengers and pedestrians as absorbing impulse. Protection performance tests on vehicle passengers were simulated by using a LS-DYNA program. Through repetitive simulation on various speed and angles, passenger protection performance according to different impact condition was contemplated. Variable setting for the simulation was calculated as the mean weight of domestic car sales. By analyzing NASS (National Automotive Sampling System) of NHTSA (National Highway Traffic Safety Administration) of the U.S., the actual speed and collision angle section of accidents were computed. As a result, we confirmed that THIV (Theoretical Head Impact Velocity) and PHD (Post-impact Head Deceleration) are increased according to the impact speed and angle. Also, when the vehicle hit the guardrail post, we could be confirmed that the passenger protection performance greatly decreased.

Optimal Design of Passenger Airbag Door System Considering the Tearseam Failure Strength (티어심 파손 강도를 고려한 동승석 에어백 도어시스템의 최적 설계)

  • Choi, Hwanyoung;Kong, Byungseok;Park, Dongkyou
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.60-68
    • /
    • 2021
  • Invisible passenger airbag door system of hard panel types must be designed with a weakened area such that the side airbag will deploy through the instrument panel as like intended manner, with no flying debris at any required operating temperature. At the same time, there must be no cracking or sharp edges in the head impact test. If the advanced airbag with the big difference between high and low deployment pressure ranges are applied to hard panel types of invisible passenger airbag (IPAB) door system, it becomes more difficult to optimize the tearseam strength for satisfying deployment and head impact performance simultaneously. It was introduced the 'Operating Window' idea from quality engineering to design the hard panel types of IPAB door system applied to the advanced airbag for optimal deployment and head impact performance. Zigzab airbag folding and 'n' type PAB mounting bracket were selected.