• 제목/요약/키워드: Vehicle Engine Control

검색결과 409건 처리시간 0.024초

하이브리드 자동차용 BLDC 전동기 제어 방법 (BLDC motor control method for hybrid electric vehicle)

  • 강신원;장종훈;정지예;원충연
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.149-151
    • /
    • 2009
  • Hybrid electric vehicle has three operating mode, depending on the operation of the engine and electric motor. According to the speed range of BLDC motor, In hybrid traction mode, both the engine and electric motor deliver to drive train. Battery charge mode, the electric motor operates as generator and is driven by the engine to charge the batteries. In engine alone traction mode, the electric motor is do-energized, and vehicle is propelled by the engine alone. we propose hysteresis current control technique to maintain constant speed in the motor load torque at the reverse direction. The proposed method is verified by using Matlab Simulink software.

  • PDF

ER 엔진마운트를 장착한 승용차량의 진동제어 성능 (Vibration Control Performance of a Passenger Vehicle Featuring ER Engine Mounts)

  • 송현정;최승복;전영식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.481-486
    • /
    • 2000
  • This paper presents vibration control performance of a passenger vehicle installed with olectro-rheological(ER) engine mounts. As a first step, a mixed-mode ER engine mount is modeled and manufactured. After verifying the controllability of the dynamic stiffness by the intensity of the electric field, ER engine mounts are incorporated with a full-car model. The governing equation of motion is then formulated by considering engine excitation force. A skyhook controller to attenuate vibration motions is designed. The controller is implemented through hardware-in-the-loop simulation and control responses are presented in the both frequency and time domains.

  • PDF

Optimal Vibration Control of Vehicle Engine-Body System using Haar Functions

  • Karimi Hamid Reza
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권6호
    • /
    • pp.714-724
    • /
    • 2006
  • In this note a method of designing optimal vibration control based on Haar functions to control of bounce and pitch vibrations in engine-body vibration structure is presented. Utilizing properties of Haar functions, a computational method to find optimal vibration control for the engine-body system is developed. It is shown that the optimal state trajectories and optimal vibration control are calculated approximately by solving only algebraic equations instead of solving the Riccati differential equation. Simulation results are included to demonstrate the validity and applicability of the technique.

엔진 가진력의 감도해석을 이용한 차실 소음 저감에 관한 연구 (A Study on the Noise Reduction of Compartment of Vehicle Using Sensitivity Analysis of Engine Exciting Force)

  • 오재응;김태욱;송재은;이해승
    • 한국자동차공학회논문집
    • /
    • 제5권4호
    • /
    • pp.171-178
    • /
    • 1997
  • Vehicle interior noise has become increasingly important in this recent years. The noise of a vehicle is one of the important problems in a vehicle design. The interior noise is caused by various vibration sources of vehicle compartment. The booming noise of a vehicle can be significantly affected by vibrations transmitted from engine excitation forces to the vehicle body. Specially, we are interested in the state of transmission paths such as engine mounts to reduce noise in a vehicle compartment. In this paper, we have been calculated the contribution of each transmission path such as engine mounts to interior noise. To identify contribution of each input sources and transmission paths to output, the effectiveness of each input component to output is calculated. Sensitivity analysis is carried out for investigation of contribution to output due to input variations. With the simulation of magnitude and phase change of inputs using vector synthesis diagram, the trends of synthesized output vector are obtained. As a result, we suggested sensitivity analysis of vector synthesis as a technique of prediction and control for noise in a vehicle compartment.

  • PDF

복합 모드형 ER엔진마운트의 성능평가 (II) - HILL를 통한 성능 평가 - (Performance Evaluation of a Mixed-Mode Type ER Engine Mount(II)-Performance Evaluation Via HILS-)

  • 최영태;최승복
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2151-2158
    • /
    • 2000
  • This paper presents vibration control performance of a passenger vehicle installed with the mixed-mode type ER engine mounts. The performance is evaluated via hardware-in-the-loop-simulation(HILS) method. As a first step, a dynamic model of a vehicle featuring the ER engine mounts is formulated by taking into account the engine excitation forces. A new type of the fuzzy skyhook controller is then established in order to control both engine and body vibrations. This is accomplished by adopting a weighting parameter between two performance criteria which is to be determined from the fuzzy algorithm. Vertical displacement and acceleration of the engine mount obtained from the HILS method are provided in the frequency domain. In addition, vibration control performance between the conventional hydraulic engine mount and the proposed engine mount is compared in the time and frequency domains.

A Self-Tuning Fuzzy Controller for Torque and RPM Control of a Vehicle Engine

  • Seon, Kwon-Seok;Na, Seung-You
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1995년도 추계학술대회 학술발표 논문집
    • /
    • pp.25-28
    • /
    • 1995
  • A Practical application of self-tuning fuzzy controller to a multi-input multi-output complex system of a vehicle engine is investigated. The ovjective is to design a controller to improve the transient performance in torque and RPM mode changes. For the performance improvement in the multivariable comples system, the self-tuning function of internal parameters is essential and practical. The measured output variables using different control schemes are compared the advanteges of the self-tuning fuzzy logic controller are better output performances and the effectiveness in the controller design using many parameters.

  • PDF

병렬형 디젤 하이브리드 전기 자동차 최적화 (Optimization of the Parallel Diesel Hybrid Vehicle)

  • 염기태;양재식;배충식;김현옥
    • 한국자동차공학회논문집
    • /
    • 제16권6호
    • /
    • pp.26-32
    • /
    • 2008
  • This research presents a simulation for the fuel economy of parallel diesel hybrid vehicle. Diesel engines compared to gasoline engines have the advantages of higher fuel economy and lower $CO_2$ emission. One of the most ways to meet future fuel economy and emissions regulation is to combine diesel engine technology with a hybrid electric vehicle. The simulation of HEV is growing need for rapid analysis of the many configurations and component options. WAVE, a one-dimensional engine analysis tool, was used to a 2.7L diesel engine. ADVISOR, designed for rapid analysis of the performance and fuel economy of vehicle models, was used to conventional and hybrid electric vehicle by the use of output file from WAVE as the input engine data file for ADVISOR. A parallel diesel HEV is at least $19.7{\sim}36%$ higher fuel economy and improved acceleration ability compared to a conventional diesel vehicle. The energy loss of the parallel diesel HEV is $23{\sim}38%$ less than the conventional vehicle using regeneration.

Remote Measurement for ECU Self Diagnostic Signals

  • Lee, Seong-Cheol;Jeong, Jin-Ho;Yun, Yeo-Hung;Lee, Young-Chun;Kwon, Tae-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.130.6-130
    • /
    • 2001
  • On-Board diagnostic systems are installed in passenger cars and light trucks on today. During the 1970's and early 1980's manufacturers started using electronic means to control engine functions and diagnose engine problems. This wa primarily to meet EPA emission standards. The CARB requires that, by model year 1996, all vehicle sold in California contain a certain minimum "On-Board Diagnostic" capability to diagnose emissions-related failures of the engine control system. These diagnostic requirements have been designated as OBD with a goal of monitoring all of the emissions-related components on-board the vehicle for proper operation. Part of the intent of CARB´s OBD program is that a single diagnostic tester can be used to read the diagnostic information from any OBD-compliant vehicle. A tester which ...

  • PDF

무인기용 직렬 하이브리드 동력시스템 운용 제어로직 (Operational Control Logic of Series Hybrid Power System for the Unmanned Aerial Vehicle)

  • 이보화;박부민;김근배
    • 한국추진공학회지
    • /
    • 제25권1호
    • /
    • pp.68-76
    • /
    • 2021
  • 본 연구에서 대상으로 삼은 직렬 하이브리드 시스템은 무인기용으로 왕복엔진, 발전기, 배터리를 주 동력원으로 사용한다. 발전기는 왕복엔진의 구동축에 직결되며, 왕복엔진-발전기 세트의 운용 특성은 지상통합시험을 통해 확인하였다. 본 연구에서는 해당 시험 결과를 바탕으로 왕복엔진-발전기 출력과 배터리 출력을 효율적으로 사용하기 위한 제어로직을 제시하였고, 로직에 따른 왕복엔진-발전기와 배터리의 출력 변동은 시뮬레이션을 통해 확인하였다. 그 결과, 발전기 출력은 제시된 제어로직에 의해 배터리 출력과 함께 추진요구전력을 공급함을 확인하였다.

2차 공기분사 및 냉각수제어에 의한 SI 엔진의 탄화수소 배기저감 (SI Engine Hydrocarbon Emissions Reduction with Secondary Air Injection and Coolant Control)

  • 박기수;조영진;박심수
    • 한국자동차공학회논문집
    • /
    • 제8권4호
    • /
    • pp.51-58
    • /
    • 2000
  • It is well known that the majority of the emissions measured from vehicle exhaust in the US Federal Test Procedure(FTP-75) are emitted during the first 60 seconds. This paper describes an experimental study on SI engine emissions reduction after cold start with interval secondary air injection and coolant control. Secondary air injection after cold start to reduce exhaust emissions causes an exothermic reaction at the exhaust port and gives sufficient air to the catalyst. For that reason engine-out emissions oxidized in the exhaust port and the rapid heating of a catalytic converter after cold start with CSAI and ISAI are estimated. The influence of the coolant temperature on SI engine emissions has been estimated. In the present studycoolant control of the cylinder head tempeature is used to investigate the effect of coolant temperature on SI engine emissions. The results show that engine-out hydrocarbon and carbon monoxide emissions are considerably reduced with interval secondary air injection and coolant control.

  • PDF