• Title/Summary/Keyword: Vehicle Engine Control

Search Result 409, Processing Time 0.027 seconds

A Study of Vehicle's Monitoring and Controller Using Embedded Web Server (임베디드 웹 서버를 이용한 자동차용 모니터링 및 제어기 개발에 관한 연구)

  • Yang, Seung-Hyun;Kim, Dong-Won;Lee, Suk-Won
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2380-2382
    • /
    • 2004
  • In this paper, Web server is built up using PXA255, 32bit RISC processor with porting Embedded Linux and GoAhead, HTTP(Hyper Text Transfer Protocol) web server, and the system with can monitor and control the environment and condition for AICC(Automatic Intelligent Cruise Control) is realized. For sending the operation condition and change of vehicle the desired data is derived by interacting ECU(Electric Control Unit) and Embedded system and the rpm of engine is controlled by step motor connected to throttle value.

  • PDF

A Study of Downsizing Effect on Turbocharged LPG Direct Injection(T-LPDI) Engine with Startability Improvement by Optimization of Fuel Control System (LPG 직분사 엔진의 다운사이징 효과 및 시동성 개선을 위한 연료 제어시스템 최적화에 관한 연구)

  • Lim, Jongsuk;Kim, Dowan;Park, Hanyong;Song, Jinoh;Han, Junghwan;Yook, Chulsoo;Park, Seongmin;Shin, Yongnam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.619-626
    • /
    • 2016
  • The new 1.4 L turbocharged LPG direct injection (T-LPDI) engine is presented in this paper to improve the fuel efficiency of the vehicles installed with the 2.0 L LPG port fuel injection (LPI) engine, while maintaining the performance as a downsizing concept for the new engine platform development. Firstly, the return type high pressure LPG fuel supply system is designed and mounted in the new 1.4 L T-LPDI engine. As a result, this new engine shows a much better WOT performance and approximately 8 % of improved fuel economy level, as compared to the 2.0 L LPI vehicle. Secondly, the LPDI engine specific optimized design for high pressure fuel components and fuel injection control strategies are proposed and evaluated in order to overcome the restartability problem in a heat-soaked condition called the vapor lock phenomenon. Consequently, these experimental results illustrate a great potential for the developed 1.4 L T-LPDI engine as a possible substitute for the 2.0 L LPI engine.

FxLMS Algorithm for Active Vibration Control of Structure By Using Inertial Damper with Displacement Constraint (관성형 능동 댐퍼를 이용한 구조물 진동 제어에서 댐퍼 질량의 변위 제한을 고려한 FxLMS 알고리즘)

  • Kang, Min Sig
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.545-557
    • /
    • 2021
  • Engine is the main source of vibration that generates unwanted noise and vibration of vehicle chassis. Especially, in submarine applications, radiation of noise signatures can be detected at some distance away from the submarine using a sonar array. Thus quiet operation is crucial for submarine's survivability. This study addresses reduction of the force transmissibility originating from engines and transmitted to hull through engine mounts. An inertial damper, as an actuator of hybrid mount system, is addressed to reduce even further the level of vibration. Narrow band FxLMS algorithms are broadly used to cancel the vibration of engine mount because of its excellent performance of canceling narrow band noise. However, in real active dampers, the maximum displacement of damper mass is kinematically restricted. When the control input signal from the FxLMS algorithm exceeds this limitation, the damper mass will collide with the mechanical stops and results in many problems. Originated from these, a modified narrow band FxLMS algorithm based on the equalizer technique with the maximum allowable displacement of active damper mass is proposed in this study. Some simulation results showed that the propose algorithm is effective to suppress vibration of engine mount while ensuring given displacement constraint.

Numerical and Experimental Study to Improve Thermal Sensitivity and Flow Control Accuracy of Electronic Thermostat in the Engine for Hybrid Vehicle (하이브리드 자동차용 엔진 내부의 전자식 수온조절기의 감온성 및 유량제어 정확도 향상을 위한 수치 및 실험적 연구)

  • Jeong, Soo-Jin;Jeong, Jinwoo;Ha, Seungchan
    • Journal of ILASS-Korea
    • /
    • v.26 no.3
    • /
    • pp.135-141
    • /
    • 2021
  • High-efficient HEV Engine cooling systems reflects variable coolant temperature because it can decrease the hydrodynamic frictional losses of lubricated engine parts in light duty conditions. In order to safely raise the operating temperature of passenger cars to a constant higher level, and thus optimize combustion and all accompanying factors, a new thermostat technology was developed : the electronically map-controlled thermostat. In this work, various crystalline plastics such as polyphthalamide (PPA) and polyphenylenesulfide (PPS) mixed with various glass fiber amounts were introduced into plastic fittings of automotive electronic controlled thermostat for the purpose of suppressing influx of coolant into the element and undesirable opening during hot soaking. Skirt was installed around element frame of automotive electronic controlled thermostat for improving thermal sensitivity in terms of response time, hysteresis and melting temperature. To validate the effectiveness and optimum shape of skirt, thermal sensitivity test and three-dimensional CFD simulation have been performed. As a consequence, important improvement in thermal sensitivity with less than 3℃ of maximum coolant temperature between opening and engine inlet was obtained.

Performance Evaluation of a Mixed-Mode Type ER Engine Mount (I);Manufacturing and Test of Engine Mount (복합모드형 ER엔진마운트의 성능평가 (I);엔진마운트의 제작 및 시험)

  • Choe, Yeong-Tae;Choe, Seung-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.370-377
    • /
    • 2000
  • This paper presents a mixed-mode type ER(electro-rheological) engine mount, and its vibration control performance for a passenger vehicle is presented. The field-dependent yield stress of a transfo rmer oil-based ER fluid is empirically distilled in both shear and flow modes. This is then incorporated with the governing equation of motion of the proposed mixed-mode(shear mode plus flow mode) type engine mount. The damping force is analyzed with respect to the intensity of the electric field and design parameters such as electrode gap. Subsequently, the ER engine mount which is equivalent to the conventional hydraulic engine mount in terms of the damping level is designed and manufactured. Both computer simulation and experimental test are undertaken in order to evaluate vibration isolation performance. In addition, this performance is compared with that of the conventional hydraulic engine mount.

Computer Simulation of an Automotive Engine Cooling System (자동차 엔진 냉각시스템의 컴퓨터 시뮬레이션)

  • 원성필;윤종갑
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.58-67
    • /
    • 2003
  • An automotive engine cooling system is closely related with overall engine performances, such as reduction of fuel consumption, decrease of air pollution, and increase of engine life. Because of complex reaction between each component, the direct experiment, using a vehicle, takes high cost, long time, and slow response to the system change. Therefore, a computer simulation would provide the designer with an inexpensive and effective tool for design, development, and optimization of the engine cooling system over a wide range of operating conditions. In this work, it has been predicted the thermal performance of the engine cooling system in cases of stationary mode, constant speed mode, and city-drive mode by mathematical modelling of each component and numerical analysis. The components are engine, radiator, heater, thermostat, water pump, and cooling fans. Since the engine model is the most important, that is divided into eight sub-sections. The volume mean temperature of eight sub-sections are simultaneously calculated at a time. For detail calculation, the radiator and heater are also divided into many sub-sections like control volumes in finite difference method. Each sub-section is assumed to consist of three parts, coolant, tube with fin, and air. Hence it has been developed the simulation program that can be used in case of design and system configuration changes. The overall performance results obtained by the program were desirable and the time-traced tendencies of the results agreed fairly well with those of actual situations.

A Study on the Intelligent Control Pattern of the Automatic Transmission in Tracked Vehicles (궤도차량용 자동변속기의 지능형변속패턴에 관한 연구)

  • 강서익
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.216-221
    • /
    • 1998
  • dynamic modelling method is applied to the driving simulation which has the calculable model of engine, transmission, vehicle. And driving pattern is used for database by actual tests and analyzed in neural network system. The simulation is compared to real test results and structures to the tracked vehicle powertrain.

  • PDF

Force-reflecting electronic power steering system using fuzzy logic (퍼지 로직을 이용한 힘반사형 전동 조향 장치)

  • 박창선;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.353-356
    • /
    • 1997
  • Vehicle steering system determines the direction of a vehicle. A manual steering system consists of mechanical connections between the steering wheel and tires. Recent power steering system adds an actuator to help a driver to steer easily at low speed. However, at front collision, the driver can be injured by steering shaft and the power steering pump decreases the engine power. To solve these problems, electronic power steering system which connects the steering wheel and tires with electronic connection is proposed, that has advantages such as decrease of engine load and increase of driver safety reactive. Since the ratio between driver's steering torque and steering torque of tires can be controlled freely, the torque which is delivered from the road to the driver through tires and steering wheel can be reshaped to make the driver feel comfortable. In this paper, the ratio of delivering steering torque and the magnitude of force to be delivered from road to driver has been controlled using fuzzy controller, and it's effectiveness has been shown through simulation results.

  • PDF

Characteristic Analysis of Non-Contact Reducer for Electric Vehicles using Arago Disc Effect (아라고 원판 효과를 이용한 전기자동차용 비접촉 감속기의 특성 분석)

  • Goon-Ho Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1223-1231
    • /
    • 2023
  • In the case of internal combustion engine vehicles, transmissions are essential for various reasons, such as vehicle starting and speed control. However, in the case of electric vehicles, unlike internal combustion engine vehicles, a transmission is not necessarily required. Of course, considering the efficiency of electric vehicles, a transmission is necessary, but installing the existing transmission as is has the opposite effect due to increased vehicle weight, so it has not been considered so far. In this paper, a non-contact reducer type using the Arago disc effect is proposed rather than a transmission using a conventional gear train, and the aim is to examine whether this can increase the driving efficiency of electric vehicles while minimizing weight. In addition, the effectiveness of the proposed reducer will be verified by manufacturing and testing it.

Design and Implementation of Electric Current Control Device for Ignition Coil in Spark Ignition Engine (스파크 점화기관의 점화코일 전류제어장치 설계 및 구현)

  • Lee, Geum-Boon;Choi, Seok-Won;Kim, Doo-Hyun;Cho, Beom-Oon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2682-2688
    • /
    • 2012
  • In this paper, we design and implement a electric current controller for ignition coil to measure the amount of current and to supply the additional current under vehicle driving conditions in spark ignition engines. The proposed controller can provide the stable current and prevent the overcurrent by measuring the amperage of primary ignition in real time. Also it enhances the performance of vehicle engine by controling the amount of ignition energy that make power increase and fuel burn more completely. The power and torque of the normal vehicle is evaluated as performance index for the experimental validation of the control module. The experimental results using dynamometer equipment show that after control module-mounted elevates the average of 10% more in both power and torque compared with before module-mounted.