• Title/Summary/Keyword: Vehicle Engine Control

Search Result 409, Processing Time 0.025 seconds

LPLi Engine Performance and Vehicle Exhaust Emission Characteristics (액상 분사 LPG 엔진 성능 및 차량 배기 배출물 특성에 관한 연구)

  • 임종훈;명차리;박심수;양승주
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.15-21
    • /
    • 2003
  • LPG is considered as one of the most prominent alternative automotive fuels in worldwide. However, conventional mixer system can not meet the emission regulations as the mileage accumulation increased. Recently, much attention is focused on the development of LPG liquid injection fuel systems to increase the engine performance and reduce the exhaust emissions. This study evaluates the LPLi(Liquid Phase LPG injection) engine performance and exhaust emission characteristics using a 3.0 liter LPG engine. The fuel supply system and engine management system were changed from FBM into LPLi to control the precise mixture ratio and optimized spark advance.

Evaluation of the Inherent Flow Coefficient of the Control Valve in the Liquid Propellant Rocket Engine (액체로켓 엔진 성능 보정용 제어밸브의 고유유량특성 계산)

  • Park, Soon-Young;Cho, Won-Kook;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.585-589
    • /
    • 2010
  • It is important for the liquid rocket engine to meet the exact performance requirements in order to guarantee the successful mission of the launch vehicle. Usually, a ground combustion test for the engine is conducted to reduce the performance error and for the tuning. For the gas-generator (GG) cycle engine, this adjustment process can be easily tuned by means of the control valves. A linearized correlation between the process parameters of the control - the combustion chamber pressure and the mixture ratio of engine - and the independent parameter of the control- rotational angle of the control valve - could be suitable to reduce the tuning errors. Also this linearity can reduce the effort for the tuning and make the process more explicit by ensuring a more intuitive control. In this point, we proposed an algorithm in the frame of the in-house-developed program to obtain the control valves' inherent characteristics which satisfy the linearity.

  • PDF

Optimal Engine Operation by Shift Speed Control of a CVT

  • Lee, Heera;Kim, Hyunsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.882-888
    • /
    • 2002
  • In this paper, an algorithm to increase the shift speed is suggested by increasing the line pressure for a metal belt CVT. In order to control the shift speed, an algorithm to calculate the target shift speed is presented from the modified CVT shift dynamics. In applying the shift speed control algorithm, a criterion is proposed to prevent the excessive hydraulic loss due to the increased line pressure. Simulations are performed based on the dynamic models of the hydraulic control valves, powertrain and the vehicle. It is found from the simulation results that performance of the engine operation can be improved by the faster shift speed, which results in the improved fuel economy by 2% compared with that of the conventional electronic control CVT in spite of the increased hydraulic loss due to the increased line pressure.

Accelerating Ability Optimization for Dual Mode Hybrid Vehicle Using Complex Planetary Gears (복합 유성기어를 이용한 듀얼모드 하이브리드 자동차의 가속성능 최적화)

  • Yang, Si-U;Kim, Nam-Wook;Yang, Ho-Rim;Park, Yoeng-Il;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.97-100
    • /
    • 2006
  • Accelerating ability is one of the most important performance of the vehicle. Unlike conventional internal combustion vehicles and power-assist hybrid vehicles, the maximized acceleration of dual mode hybrid vehicles is not simply. achieved by maximizing engine or motor torque Because of the dynamic stability of planetary gear, speeds and torques control of engine, motor 1 and motor 2 is essential and according to control value, acceleration performance is changed There are two control values which are velocity and torque for each component totalling six. These six values can be variables for an objective function. However, because three velocity variables can be regarded as only one variable speed ratio and the remaining three torque variables can be solved analytically, without complicated numerical algorithm the solution for the objective function can be obtained. This optimized solution shows the best performance possible to the specified dual mode system.

  • PDF

The Review of Saturn V 1st Stage (S-IC) Propulsion System (Saturn V 발사체 1단(S-IC) 추진기관 시스템 연구)

  • Hong, Yonggi;Kim, Cheulwoong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.2
    • /
    • pp.73-80
    • /
    • 2015
  • It had been almost a half century since Apollo Mission was ended. However, in these days, a lot of researches are being conducted for restoration and making improvements in technologies used in Saturn V rocket's development. This study reviews the first stage of Saturn V rocket(S-IC), from development history to technologies in various subsystems such as engine purge system, POGO suppression system, hydraulic and pneumatic control system, propellant dispersion system, telemetry system and retrorocket system. Understandings of S-IC stage's operation systems would be helpful in understanding of launch vehicle system and reduction of time and cost in future development process.

VEHICLE LONGITUDINAL AND LATERAL STABILITY ENHANCEMENT USING A TCS AND YAW MOTION CONTROLLER

  • Song, J.H.;Kim, H.S.;Kim, B.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.49-57
    • /
    • 2007
  • This paper proposes a traction control system (TCS) that uses a sliding mode wheel slip controller and a PID throttle valve controller. In addition, a yaw motion controller (YMC) is also developed to improve lateral stability using a PID rear wheel steering angle controller. The dynamics of a vehicle and characteristics of the controllers are validated using a proposed full-car model. A driver model is also designed to steer the vehicle during maneuvers on a split ${\mu}$ road and double lane change maneuver. The simulation results show that the proposed full-car model is sufficient to predict vehicle responses accurately. The developed TCS provides improved acceleration performances on uniform slippery roads and split ${\mu}$ roads. When the vehicle is cornering and accelerating with the brake or engine TCS, understeer occurs. An integrated TCS eliminates these problems. The YMC with the integrated TCS improved the lateral stability and controllability of the vehicle.

A Study on the Speed-based Active Compensation of the Kiss-Point of Dry-type Clutch Equipped with Automated Manual Transmission (자동화 수동변속기용 건식클러치의 속도기반 Kiss-Point 능동 보상에 관한 연구)

  • Choi, Woo-Seok;Lee, Kyo-Bum;Lim, Wonsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.372-378
    • /
    • 2016
  • Clutch torque control is the key to the ride comfort improvement of a vehicle equipped with AMT (automated manual transmission). For such control, the torque transfer starting point, known as the "kiss point," should be indicated or at least estimated to compensate for the clutch torque. The kiss point changes due to wear, high temperature, and fatigue; as such, it should be estimated while the vehicle is being driven. In this study, the method of kiss point active estimation for an AMT vehicle with a dry-type clutch was devised. The kiss point is learned while the engine is in an idle state and while the transmission is at a neutral gear position. It is determined when the input shaft of the transmission starts to rotate by slowly engaging the clutch. The noise of the shaft speed signal during the slow engagement process is filtered for accurate control. The kiss point estimation at various clutch engagement speeds was analyzed via a vehicle test.

Development of Algorithm for Advanced Driver Assist based on In-Wheel Hybrid Driveline (인휠 전기 구동 기반의 능동안전지원 알고리즘 개발)

  • Hwang, Yun-Hyoung;Yang, In-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.1-8
    • /
    • 2017
  • This paper presents the development of an adaptive cruise control (ACC) system, which is one of the typical advanced driver assist systems, for 4-wheel drive hybrid in-wheel electric vehicles. The front wheels of the vehicle are driven by a combustion engine, while its rear wheels are driven by in-wheel motors. This paper proposes an adaptive cruise control system which takes advantage of the unique driveline configuration presented herein, while the proposed power distribution algorithm guarantees its tracking performance and fuel efficiency at the same time. With the proposed algorithm, the vehicle is driven only by the engine in normal situations, while the in-wheel motors are used to distribute the power to the rear wheels if the tracking performance decreases. This paper also presents the modeling of the in-wheel motors, hybrid in-wheel driveline, and integrated ACC control system based on a commercial high-precision vehicle dynamics model. The simulation results obtained with the model are presented to confirm the performance of the proposed algorithm.

KSR- III 추력벡터제어를 위한 유압-서보 김발엔진 구동시스템에 관한 연구

  • Lee, Hee-Joong
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.141-146
    • /
    • 2002
  • During dynamic flight by propulsion of rocket engine, in the atmosphere, the attitude control of flight vehicle can be accomplished by the aerodynamic fin actuator. But, in the outer space, the method of TVC(Thrust Vector Control) is only depend on for it. There are many systems which were developed for TVC. In our research, among them we adopted gimbal engine actuation system which could control the vector of thrust by swivelling rocket engine connected by gimbal. There are electro-hydraulic, electro-mechanical and pneumatic system which can be used as gimbal engine actuation system, but the electro-hydraulic system that has high ratio of output power to mass is preferred for the high power system. In this note, we made a mathematical model of the electro-hydraulic gimbal engine actuation system for the TVC of KSR-III in detail and on the base of this model we performed a simulation study. And then, we verified the model by making a comparison between the simulation and the experiments on the real system.

  • PDF

Practical Methodology of the Integrated Design and Power Control Unit for SHEV with Multiple Power Sources

  • Lee, Seongjun;Kim, Jonghoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.353-360
    • /
    • 2016
  • Series hybrid electric vehicles (SHEVs) having multiple power sources such as an engine- generator (EnGen), a battery, and an ultra-capacitor require a power control unit with high power density and reliable control operation. However, manufacturing using separate individual power converters has the disadvantage of low power density and requires a large number of power and signal cable wires. It is also difficult to implement the optimal power distribution and fault management algorithm because of the communication delay between the units. In order to address these concerns, this approach presents a design methodology and a power control algorithm of an integrated power converter for the SHEVs powered by multiple power sources. In this work, the design methodology of the integrated power control unit (IPCU) is firstly elaborately described, and then efficient and reliable power distribution algorithms are proposed. The design works are verified with product-level and vehicle-level performance experiments on a 10-ton SHEV.