• Title/Summary/Keyword: Vehicle Dynamic Control(VDC)

Search Result 11, Processing Time 0.028 seconds

A Study on the Performance Characteristics of the VDC Vehicle (VDC 장착 차량의 기동 특성에 관한 연구)

  • 김태기;박윤기;서명원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.146-157
    • /
    • 1999
  • Safety systems for road vehicles have been rapidly developed in recent years. Especially, the VDC(Vehicle dynamics Control) system is a new active safety system for road vehicles which controls its dynamic vehicle motion in emergency situations . In the case of configuring the VDC system by utilizing the ABS(Anti-lock Brake System), the role of a control logic which directly influences the vehicle motion is very important. In this study the performance of the VDC vehicle was compared to the performances of the CBS (Conventional Brake system )and ABS vehicle. For various driving conditions , the simulation of vehicle dynamics with known VDC control logics was performed. Analysis results showed the VDC vehicle could stably perform even on the road of low coefficient of friction. In addition it was shown that the basic control logic for the VDC system could outstandingly improve driving stability in the case of braking as well as constant speed cruising.

  • PDF

A Study on the Engine/Brake integrated VDC System using Neural Network (신경망을 이용한 엔진/브레이크 통합 VDC 시스템에 관한 연구)

  • Ji, Kang-Hoon;Jeong, Kwang-Young;Kim, Sung-Gaun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.414-421
    • /
    • 2007
  • This paper presents a engine/brake integrated VDC(Vehicle Dynamic Control) system using neural network algorithm methods for wheel slip and yaw rate control. For stable performance of vehicle, not only is the lateral motion control(wheel slip control) important but the yaw motion control of the vehicle is crucial. The proposed NNPI(Neural Network Proportional-Integral) controller operates at throttle angle to improve the performance of wheel slip. Also, the suggested NNPID controller performs at brake system to improve steering performance. The proposed controller consists of multi-hidden layer neural network structure and PID control strategy for self-learning of gain scheduling. Computer Simulation have been performed to verify the proposed neural network based control scheme of 17 dof vehicle dynamic model which is implemented in MATLAB Simulink.

Development of Vehicle Dynamics Control System (차량동역학제어시스템 개발)

  • 김동신;신현성;박병석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.212-219
    • /
    • 1999
  • This paper describes the NANDO VDC (Vehicle Dynamics Control) system for the vehicle stability enhancement and consists of the control strategies , computer simulation and tests on the various road surface. This VDC system controls the dynamic vehicle motion in the emergency situation such as the final oversteer/understeer andallows the vehicle to follow the course as desired by the driver. The system is based on an active yaw control and its performance verified by the test is shown. Also the comparison between the MANDO VDC System and a competitor is carried out.

  • PDF

Design of Control Logics for Improving Vehicle Dynamic Stability (차량 안정성 향상을 위한 제어기 설계)

  • 허승진;박기홍;이경수;나혁민;백인호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.165-172
    • /
    • 2000
  • The VDC(Vehicle Dynamic Control) is a control system whose target is to improve stability of a vehicle under lateral motion. A lateral vehicle motion, especially on a slippery road, can lead to a hazardous situation, and the situation can even worsen by the driver`s inappropriate response. In this paper, two VDC systems, a fuzzy-based controller and an LQR-based controller have been developed. The controllers take as input the yaw rate and the sideslip angle of either body or rear wheel, and they yield the direct yaw moment signal by which the vehicle can gain stability during cornering. Simulations have been conducted to evaluate the performance of the control system. The results indicated that the controllers can successfully improve vehicle stability under potentially dangerous driving conditions.

  • PDF

VEHICLE DYNAMIC CONTROL ALGORITHM AND ITS IMPLEMENTATION ON CONTROL PROTOTYPING SYSTEM

  • Zhang, Y.;Yin, C.;Zhang, J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.167-172
    • /
    • 2006
  • A design of controller for vehicle dynamic control(VDC) and its implementation on the real vehicle were introduced. The controller has been designed using a three-degrees-of-freedom(3DOF) yaw plane vehicle, and the control algorithm was implemented on the vehicle by control prototyping system dSPACE. A hybrid control algorithm, which makes full use of the advantages of robust and fuzzy control, was adopted in the control system. Field test results show that the performance of the vehicle handling dynamics with hybrid controller is improved obviously compared to that without VDC and with simple robust controller on skiddy roads(friction coefficients lower than 0.3).

EVALUATION OF VEHICLE DYNAMIC CONTROL FOR ROLOVER PREVENTION

  • Ungoren, A.Y.;Peng, H.
    • International Journal of Automotive Technology
    • /
    • v.5 no.2
    • /
    • pp.115-122
    • /
    • 2004
  • Evaluation of active safety control systems usually relies heavily on field testing and is time-consuming and costly. Advances in computer simulations make it possible to perform exhaustive design trials and evaluations before field testing, and promise to dramatically reduce development cost and cycle time. In this paper, a comprehensive simulation-based evaluation procedure is proposed, which combines standard evaluation maneuvers, worst-case techniques, and a driver model for closed-loop path following evaluations. A vehicle dynamic controller (VDC) for a popular Sport Utility Vehicle is evaluated using the proposed procedure. Simulation results show that the proposed procedure can be used to assess the performance of the VDC under various conditions and provides valuable information for the re-design of the VDC.

Corner Braking Test and Simulation for Development of VDC System (VDC장치 개발을 위한 코너제동 실험 및 시뮬레이션)

  • 이창노;박혁성;김영관
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.211-216
    • /
    • 2003
  • The influence of braking force generated by one tire on vehicle dynamics was investigated by simulation and ground test. A 8 d. o. f vehicle model was developed for simulation. And a special device to apply brake pressure to individual wheel was built for vehicle test. As a result of corner braking test on straight driving, the dynamic responses such as yawrate, lateral acceleration and roll angle were produced in the vehicle, which were in a good agreement to the simulation results. This shows that comer braking used in VDC system can control vehicle dynamics to improve controllability and directional stability.

A Study on the Development of a Real Time Simulator for the ESP (Electronic Stability Program) (전자식 차체 자세 제어 장치를 위한 실시간 시뮬레이터 개발에 관한 연구)

  • Kim, Tae Un;Cheon, Seyoung;Yang, Soon Young
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.48-55
    • /
    • 2019
  • The Electronic Stability Program (ESP), a system that improves vehicle safety, also known as YMC (Yaw Motion Controller) or VDC (Vehicle Dynamics Control), is a system that operates in unstable or sudden driving and braking situations. Developing conditions such as unstable or sudden driving and braking situations in a vehicle are very dangerous unless you are an experienced professional driver. Additionally, many repetitive tests are required to collect reliable data, and there are many variables to consider such as changes in the weather, road surface, and tire condition. To overcome this problem, in this paper, hardware and control software such as the ESP controller, vehicle engine, ABS, and TCS module, composed of three control zones, are modeled using MATLAB/SIMULINK, and the vehicle, climate, and road surface. Various environmental variables such as the driving course were modeled and studied for the real-time ESP real-time simulator that can be repeatedly tested under the same conditions.

Improving Vehicle Driving Stability by Controlling CVT and Brake Force (CVT 및 BrakeForce 제어를 통한 차량 주행 안정성 향상)

  • 조현욱;이승종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.305-308
    • /
    • 2002
  • The mechanics, electronics and manufacturing technology have been developed rapidly. Nowadays vehicle stability becomes more and more important then ABS (Anti-lo7k Brake System), ASR (Anti-Slip Regulator), TCS, (Traction Control System), ESP (Electronic Stability Program), and VDC (Vehicle Dynamic Control) which actively control the vehicle stability actively has been improved. In this study, instead of automatic transmission, CVT (Continuously Variable Transmission) is used because of the continuously gear ratio changes. It can effectively transfer the torque from engine to tire more than other gear transmission. The modeling is simplified assuming that there are no resistance parameters.

  • PDF

A Study on Global Chassis Control Logic of Vehicles (차량 통합샤시제어 로직에 관한 연구)

  • 박기홍;허승진;손성효;장영하;황태훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1001-1005
    • /
    • 2003
  • Most electronic chassis control systems until today have been designed with optimization on its own performance. Recently, however. importance of the global chassis control (GCC) concept that aims to achieve optimal performance on a global basis is more emphasized than ever, as the x-by-wire technology is rapidly progressing. In this research, a study has been done for developing a GCC logic for combining longitudinal, lateral, and vertical chassis control subsystems. A simulation has been performed to investigate interactions among the subsystems, and based upon the results, a GCC logic has been developed. The logic has been tested under various driving conditions. and the results have been compared with those from implementing subsystems without any GCC logic.

  • PDF