• 제목/요약/키워드: Vehicle Driving

검색결과 2,662건 처리시간 0.028초

Driving Performance Analysis of the Adaptive Cruise Controlled Vehicle with a Virtual Reality Simulation System

  • Kwon Seong-Jin;Chun Jee-Hoon;Jang Suk;Suh Myung-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.29-41
    • /
    • 2006
  • Nowadays, with the advancement of computers, computer simulation linked with VR (Virtual Reality) technology has become a useful method for designing the automotive driving system. In this paper, the VR simulation system was developed to investigate the driving performances of the ASV (Advanced Safety Vehicle) equipped with an ACC (Adaptive Cruise Control) system. For this purpose, VR environment which generates visual and sound information of the vehicle, road, facilities, and terrain was organized for the realistic driving situation. Mathematical models of vehicle dynamic analysis, which includes the ACC algorithm, have been constructed for computer simulation. The ACC algorithm modulates the throttle and the brake functions of vehicles to regulate their speeds so that the vehicles can keep proper spacing. Also, the real-time simulation algorithm synchronizes vehicle dynamics simulation with VR rendering. With the developed VR simulation system, several scenarios are applied to evaluate the adaptive cruise controlled vehicle for various driving situations.

An Optimal Driving Support Strategy(ODSS) for Autonomous Vehicles based on an Genetic Algorithm

  • Son, SuRak;Jeong, YiNa;Lee, ByungKwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권12호
    • /
    • pp.5842-5861
    • /
    • 2019
  • A current autonomous vehicle determines its driving strategy by considering only external factors (Pedestrians, road conditions, etc.) without considering the interior condition of the vehicle. To solve the problem, this paper proposes "An Optimal Driving Support Strategy(ODSS) based on an Genetic Algorithm for Autonomous Vehicles" which determines the optimal strategy of an autonomous vehicle by analyzing not only the external factors, but also the internal factors of the vehicle(consumable conditions, RPM levels etc.). The proposed ODSS consists of 4 modules. The first module is a Data Communication Module (DCM) which converts CAN, FlexRay, and HSCAN messages of vehicles into WAVE messages and sends the converted messages to the Cloud and receives the analyzed result from the Cloud using V2X. The second module is a Data Management Module (DMM) that classifies the converted WAVE messages and stores the classified messages in a road state table, a sensor message table, and a vehicle state table. The third module is a Data Analysis Module (DAM) which learns a genetic algorithm using sensor data from vehicles stored in the cloud and determines the optimal driving strategy of an autonomous vehicle. The fourth module is a Data Visualization Module (DVM) which displays the optimal driving strategy and the current driving conditions on a vehicle monitor. This paper compared the DCM with existing vehicle gateways and the DAM with the MLP and RF neural network models to validate the ODSS. In the experiment, the DCM improved a loss rate approximately by 5%, compared with existing vehicle gateways. In addition, because the DAM improved computation time by 40% and 20% separately, compared with the MLP and RF, it determined RPM, speed, steering angle and lane changes faster than them.

주행 상황에 따른 전기차와 내연기관차의 에너지 소비 비교 (Energy Consumption of the Electric Vehicle and Internal Combustion Engine Vehicle for Different Driving Cases)

  • 김정민
    • 한국기계가공학회지
    • /
    • 제19권5호
    • /
    • pp.8-13
    • /
    • 2020
  • In this paper, the electric vehicle (EV) and internal combustion engine vehicle (ICEV) are compared for different driving cases. The EV exhibits a lower powertrain efficiency when driven on the aggressive driving cycle than when driven on the moderate cycle. In particular, EV powertrain efficiency is low when the battery state of charge (SOC) is low, but ICEV efficiency increases when the driving cycle changes from the moderate cycle to the aggressive cycle. Based on these results, attempts can be made to increase EV powertrain efficiency. EV charging before the battery power drops to a low charging state can reduce energy consumption by 2.7% for an urban area. Furthermore, ECO driving has a more significant effect on EVs than on ICEVs.

Real-Time Safety Driving Assistance System Based on a Smartphone

  • Kang, Joon-Gyu;Kim, Yoo-Won;Jun, Moon-Seog
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권8호
    • /
    • pp.33-39
    • /
    • 2017
  • In this paper, we propose a method which implements warning to drivers through real-time analysis of risky and unexpected driver and vehicle behavior using only a smartphone without using data from digital tachograph and vehicle internal sensors. We performed the evaluation of our system that demonstrates the effectiveness and usefulness of our method for risky and unexpected driver and vehicle behavior using three information such as vehicle speed, azimuth and GPS data which are acquired from a smartphone sensors. We confirmed the results and developed the smartphone application for validate and conducted simulation using actual driving data. This novel functionality of the smartphone application enhances drivers' situational awareness, increasing safety and effectiveness of driving.

충돌회피를 위한 극한 운전시 자동차의 동적안정성 해석 (Dynamic Stability Analysis of A Vehicle in Limit Driving for Crash Avoidance)

  • 김성필;백운경
    • 동력기계공학회지
    • /
    • 제1권1호
    • /
    • pp.106-123
    • /
    • 1997
  • In this study, vehicle directional stability is investigated for limit driving for crash avoidance maneuver using a full vehicle dynamic model. The model was analytically validated using typical step steering and lane change simulation. Limit driving condition for the vehicle model was quoted from research results of references. It was demonstrated that instable vehicle motion was caused by not only road conditions but also driving conditions. Also, the simulation showed that braking combined with steering caused very hazardous situation in crash avoidance maneuver. Finally, phase plane plot approach was used to evaluate the dynamic instability.

  • PDF

Traffic Information Service Model Considering Personal Driving Trajectories

  • Han, Homin;Park, Soyoung
    • Journal of Information Processing Systems
    • /
    • 제13권4호
    • /
    • pp.951-969
    • /
    • 2017
  • In this paper, we newly propose a traffic information service model that collects traffic information sensed by an individual vehicle in real time by using a smart device, and which enables drivers to share traffic information on all roads in real time using an application installed on a smart device. In particular, when the driver requests traffic information for a specific area, the proposed driver-personalized service model provides him/her with traffic information on the driving directions in advance by predicting the driving directions of the vehicle based on the learning of the driving records of each driver. To do this, we propose a traffic information management model to process and manage in real time a large amount of online-generated traffic information and traffic information requests generated by each vehicle. We also propose a road node-based indexing technique to efficiently store and manage location-based traffic information provided by each vehicle. Finally, we propose a driving learning and prediction model based on the hidden Markov model to predict the driving directions of each driver based on the driver's driving records. We analyze the traffic information processing performance of the proposed model and the accuracy of the driving prediction model using traffic information collected from actual driving vehicles for the entire area of Seoul, as well as driving records and experimental data.

운전 경력에 따른 차량 내 디스플레이 정보표시 요구사항 비교 (Comparative Analysis of Requirements for Information Presentation on In-vehicle Display Systems by Driving Career)

  • 구보람;주다영
    • 한국자동차공학회논문집
    • /
    • 제24권6호
    • /
    • pp.668-676
    • /
    • 2016
  • The accelerated convergence of automobiles and ICT has led to an increase in in-vehicle electronic devices designed to enhance the safety and convenience of drivers. Consequently, the information presentation on in-vehicle display systems for drivers and passengers need to be taken into account in order to guarantee driving stability while satisfying the needs of UX-based design users. This study compared and evaluated requirements for information items shown on in-vehicle displays regarding driving safety and convenience by groups according to driving career. A total of 38 information items related to safety and convenience that can be displayed while driving and pulling over were collected. Their level of necessity was tested and evaluated by 234 drivers. Using the results, we conducted a comparative analysis on the requirements for information presentation on in-vehicle display systems by groups according to driving career.

도심 주행 조건에 따른 차량 탑재 태양광모듈의 발전특성 분석 (Analysis on Power Generation Characteristics of a Vehicle Rooftop Photovoltaic Module with Urban Driving Conditions)

  • 전선우;정승훈;배성우;최재영;신동현
    • 전력전자학회논문지
    • /
    • 제25권2호
    • /
    • pp.79-86
    • /
    • 2020
  • This study examines the power generation characteristics of a vehicle rooftop photovoltaic module with urban driving conditions. Actual test data with an illuminometer and a thermometer were used to analyze the power generation characteristics of the vehicle rooftop photovoltaic module. In addition, the power generation characteristics were analyzed in terms of urban driving conditions, irradiance, ambient temperature, and photovoltaic module temperature. This study also analyzes the power generation characteristics of the vehicle rooftop photovoltaic module with urban driving conditions through a wavelet transform filtering method. The power generation characteristics of the vehicle rooftop photovoltaic module with urban driving conditions depend on the change in irradiance rather than that in photovoltaic module temperature.

완전자율주행자동차의 운행 안전성 보장 제고 방안 - 독일 도로교통법 및 일본 도로교통법 개정 사항을 중심으로 (A Study for Improving Driving Safety Assurance for Fully Autonomous Vehicles - Focusing on Amendments of the German Road Traffic Act and the Japanese Road Traffic Act)

  • 박경신
    • 자동차안전학회지
    • /
    • 제15권1호
    • /
    • pp.45-54
    • /
    • 2023
  • In the commercialization stage of level 4 or higher autonomous driving, the need for new legal system related to drive safely has increased in order to meet the improved level of technological development. Especially human drivers should not be legally accountable for road safety in the era of autonomous vehicles and thus safety standards for operation of autonomous vehicles are significant. To address this issue, the German Road Traffic Act was revised in 2021, adding provisions corresponding to the commercialization of self-driving vehicle of level 4 and in the similar context the Japanese Road Traffic Ac was amended in 2022. This Article draws implications for legislative discussions on driving-related responsibilities of driverless autonomous vehicle to ensure driving safety in Korea through recent amendments in Germany and Japan.

6자유도 주행 시뮬레이터 구동을 위한 제어기 설계 및 성능평가 (A Controller Design and Performance Evaluation for 6 DOF Driving Simulator)

  • 강진구
    • 디지털산업정보학회논문지
    • /
    • 제8권1호
    • /
    • pp.1-7
    • /
    • 2012
  • In this paper Vehicle driving simulator have been used in the development and modification of models. A real-time simulation system and washout algorithm for an excavator have been developed for a driving simulator with six degrees of freedom. An interesting question, "how the 6 DOF Driving Simulator can be controlled optimally for the various tasks?" is not easy to be answered. This paper presents the hardware and software developed for a driving simulator of construction vehicle. A simulator can reduce cost and time a variety of driving simulations in the laboratory. Using its 6 DOF Simulator can move in various modes, and perform dexterous tasks. Driving simulators have begun to proliferate in the automotive industry and the associated research community. This effort involves the real-time dynamic of wheel-type excavator the design and manufacturing of the Stewart platform an integrated control system of the platform and three-dimensional graphic modeling of the driving environments.