• 제목/요약/키워드: Vehicle Damage Detection

검색결과 76건 처리시간 0.026초

The tap-scan method for damage detection of bridge structures

  • Xiang, Zhihai;Dai, Xiaowei;Zhang, Yao;Lu, Qiuhai
    • Interaction and multiscale mechanics
    • /
    • 제3권2호
    • /
    • pp.173-191
    • /
    • 2010
  • Damage detection plays a very important role to the maintenance of bridge structures. Traditional damage detection methods are usually based on structural dynamic properties, which are acquired from pre-installed sensors on the bridge. This is not only time-consuming and costly, but also suffers from poor sensitivity to damage if only natural frequencies and mode shapes are concerned in a noisy environment. Recently, the idea of using the dynamic responses of a passing vehicle shows a convenient and economical way for damage detection of bridge structures. Inspired by this new idea and the well-established tap test in the field of non-destructive testing, this paper proposes a new method for obtaining the damage information through the acceleration of a passing vehicle enhanced by a tapping device. Since no finger-print is required of the intact structure, this method can be easily implemented in practice. The logistics of this method is illustrated by a vehicle-bridge interaction model, along with the sensitivity analysis presented in detail. The validity of the method is proved by some numerical examples, and remarks are given concerning the potential implementation of the method as well as the directions for future research.

YOLOv4를 이용한 차량파손 검출 모델 개선 (Improving the Vehicle Damage Detection Model using YOLOv4)

  • 전종원;이효섭;한희일
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.750-755
    • /
    • 2021
  • 본 논문에서는 YOLOv4를 이용하여 차량의 부위별 파손현황을 검출하는 기법을 제안한다. 제안 알고리즘은 YOLOv4를 통해 차량의 부위와 파손을 각각 학습시킨 후 검출되는 바운딩 박스의 좌표 정보들을 추출하여 파손과 차량부위의 포함관계를 판단하는 알고리즘을 적용시켜 부위별 파손현황을 도출한다. 또한 성능비교의 객관성을 위하여 동일분야의 VGGNet을 이용한 기법, 이미지 분할과 U-Net 모델을 이용한 기법, Weproove.AI 딥러닝 모델 등을 대조 모델로 포함한다. 이를 통하여 제안 알고리즘의 성능을 비교, 평가하고 검출 모델의 개선 방안을 제안한다.

Application of operating vehicle load to structural health monitoring of bridges

  • Rafiquzzaman, A.K.M.;Yokoyama, Koichi
    • Smart Structures and Systems
    • /
    • 제2권3호
    • /
    • pp.275-293
    • /
    • 2006
  • For health monitoring purpose usually the structure is instrumented with a large scale and multichannel measurement system. In case of highway bridges, operating vehicle could be utilized to reduce the number of measuring devices. First this paper presents a static damage detection algorithm of using operating vehicle load. The technique has been validated by finite element simulation and simple laboratory test. Next the paper presents an approach of using this technique to field application. Here operating vehicle load data has been used by instrumenting the bridge at single location. This approach gives an upper hand to other sophisticated global damage detection methods since it has the potential of reducing the measuring points and devices. It also avoids the application of artificial loading and interruption of any traffic flow.

스플릿 스펙트럼을 이용한 자동차 타이어 손상 검출에 관한 연구 (A Study of the Vehicle Tire Damage Detection using Split Spectrum Processing)

  • 전재석;김호연;강대수
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권6호
    • /
    • pp.113-118
    • /
    • 2010
  • 주행 중인 자동차 타이어의 손상을 검출하기 위해 타이어에서 발생하는 초음파 신호에 대한 스플릿 스펙트럼 처리 알고리즘을 연구하였다. 스플릿 스펙트럼의 최대값을 추정하는 알고리즘을 사용하여 정상적인 타이어와 손상 물질에 의해 손상된 타이어에 대한 처리 결과를 비교하였다. 자기상관함수를 이용한 결과, 실험에 사용된 손상된 타이어에서는 주행속도 50km/h 일 때 162.9ms, 100km/h 일 때 84.81ms 주기로 손상 특이점을 검출 할 수 있었으며, 이에 의해 자동차 주행속도에 따른 손상 특징 점의 주기성을 이용하여 손상 물질에 의한 타이어의 손상 판단이 가능하였다.

무인이동체와 딥러닝 기반 이미지 분석 기술을 활용한 철도교량 자동 손상 분석 방법 연구 (A Study of Railway Bridge Automatic Damage Analysis Method Using Unmanned Aerial Vehicle and Deep Learning-based Image Analysis Technology)

  • 나용현;박미연
    • 한국재난정보학회 논문집
    • /
    • 제17권3호
    • /
    • pp.556-567
    • /
    • 2021
  • 연구목적: 본 연구에서는 무인이동체를 활용한 철도교량의 외관조사 점검을 보다 효율적이고 신뢰성 있게 점검을 위하여 무인이동체를 통해 촬영된 이미지를 바탕으로 다양한 방식의 딥러닝 기반 자동 손상 분석기술을 검토하였다. 연구방법: 취득된 이미지를 바탕으로 손상항목을 정의하고 학습데이터로 추출하여 딥러닝 분석 모델을 생성하였다. 그리고 철도교량의 외관 손상 중 균열, 콘크리트 박리·박락, 누수, 철근노출에 대한 손상 이미지를 학습한 모델을 적용하여 자동 손상 분석 결과로 테스트하였다. 연구결과: 분석 결과 평균 95%이상 검측 재현율을 도출하는 분석 기법을 검토할 수 있었다. 이와 같은 분석 기술은 기존 육안점검 결과 대비 보다 객관적이고 정밀한 손상 검측이 가능하다. 결론: 본 연구를 통해 개발된 기술을 통해 철도 유지관리 분야에서 무인이동체를 활용한 정기점검 시 자동손상분석을 통한 객관적인 결과도출과 기존 대비 소요시간, 비용저감이 가능할 것으로 기대된다.

Simultaneous identification of damage in bridge under moving mass by Adjoint variable method

  • Mirzaee, Akbar;Abbasnia, Reza;Shayanfar, Mohsenali
    • Smart Structures and Systems
    • /
    • 제21권4호
    • /
    • pp.449-467
    • /
    • 2018
  • In this paper, a theoretical and numerical study on bridge simultaneous damage detection procedure for identifying both the system parameters and input excitation mass, are presented. This method is called 'Adjoint Variable Method' which is an iterative gradient-based model updating method based on the dynamic response sensitivity. The main advantage of proposed method is inclusion of an analytical method to augment the accuracy and speed of the solution. Moving mass is a model which takes into account the inertia effects of the vehicle. This interaction model is a time varying system and proposed method is capable of detecting damage in this variable system. Robustness of proposed method is illustrated by correctly detection of the location and extension of predetermined single, multiple and random damages in all ranges of speed and mass ratio of moving vehicle. A comparison study of common sensitivity and proposed method confirms its efficiency and performance improvement in sensitivity-based damage detection methods. Various sources of errors including the effects of measurement noise and initial assumption error in stability of method are also discussed.

A systematic method from influence line identification to damage detection: Application to RC bridges

  • Chen, Zhiwei;Yang, Weibiao;Li, Jun;Cheng, Qifeng;Cai, Qinlin
    • Computers and Concrete
    • /
    • 제20권5호
    • /
    • pp.563-572
    • /
    • 2017
  • Ordinary reinforced concrete (RC) and prestressed concrete bridges are two popular and typical types of short- and medium-span bridges that accounts for the vast majority of all existing bridges. The cost of maintaining, repairing or replacing degraded existing RC bridges is immense. Detecting the abnormality of RC bridges at an early stage and taking the protective measures in advance are effective ways to improve maintenance practices and reduce the maintenance cost. This study proposes a systematic method from influence line (IL) identification to damage detection with applications to RC bridges. An IL identification method which integrates the cubic B-spline function with Tikhonov regularization is first proposed based on the vehicle information and the corresponding moving vehicle induced bridge response time history. Subsequently, IL change is defined as a damage index for bridge damage detection, and information fusion technique that synthesizes ILs of multiple locations/sensors is used to improve the efficiency and accuracy of damage localization. Finally, the feasibility of the proposed systematic method is verified through experimental tests on a three-span continuous RC beam. The comparison suggests that the identified ILs can well match with the baseline ILs, and it demonstrates that the proposed IL identification method has a high accuracy and a great potential in engineering applications. Results in this case indicate that deflection ILs are superior than strain ILs for damage detection of RC beams, and the performance of damage localization can be significantly improved with the information fusion of multiple ILs.

Health monitoring of pedestrian truss bridges using cone-shaped kernel distribution

  • Ahmadi, Hamid Reza;Anvari, Diana
    • Smart Structures and Systems
    • /
    • 제22권6호
    • /
    • pp.699-709
    • /
    • 2018
  • With increasing traffic volumes and rising vehicle traffic, especially in cities, the number of pedestrian bridges has also increased significantly. Like all other structures, pedestrian bridges also suffer damage. In order to increase the safety of pedestrians, it is necessary to identify existing damage and to repair them to ensure the safety of the bridge structures. Owing to the shortcomings of local methods in identifying damage and in order to enhance the reliability of detection and identification of structural faults, signal methods have seen significant development in recent years. In this research, a new methodology, based on cone-shaped kernel distribution with a new damage index, has been used for damage detection in pedestrian truss bridges. To evaluate the proposed method, the numerical models of the Warren Type steel truss and the Arregar steel footbridge were used. Based on the results, the proposed method and damage index identified the damage and determined its location with a high degree of precision. Given the ease of use, the proposed method can be used to identify faults in pedestrian bridges.

객체 인식 모델을 활용한 적재 불량 화물차 탐지 시스템 (An Overloaded Vehicle Identifying System based on Object Detection Model)

  • 정우진;박진욱;박용주
    • 한국정보통신학회논문지
    • /
    • 제26권12호
    • /
    • pp.1794-1799
    • /
    • 2022
  • 최근 증가하고 있는 도로 위 적재 불량 화물차는 비정상적인 무게 중심으로 인해 물체 낙하, 도로 파손, 연쇄 추돌 등 교통안전에 위해가 되고 한번 사고가 발생하면 큰 피해가 유발할 수 있다. 하지만 이러한 비정상적인 무게 중심은 적재 불량 차량 인식을 위한 주행 중 축중 시스템으로는 검출이 불가능하다는 한계점이 있다. 본 논문에서는 이러한 사회 문제를 야기하는 적재 불량 차량을 관리하기 위한 객체 인식 기반 AI 모델을 구축하고자 한다. 또한 AI-Hub에 공개된 약 40만 장의 데이터셋을 비교 분석하여 전처리를 통해 적재 불량 차량 검지 AI 모델의 성능을 향상시키는 방법을 제시한다. 또한 객체 추적을 통해 실시간 검지를 수행하는 방법을 제안한다. 이를 통해, 원시 데이터를 활용한 학습 성능 대비 약 23% 향상된 적재 불량 차량의 검출 성능을 나타냄을 보였다. 본 연구 결과를 통해 공개 빅데이터를 보다 효율적으로 활용하여, 객체 인식 기반 적재 불량 차량 탐지 모델 개발에 적용할 수 있을 것으로 기대된다.

Indirect structural health monitoring of a simplified laboratory-scale bridge model

  • Cerda, Fernando;Chen, Siheng;Bielak, Jacobo;Garrett, James H.;Rizzo, Piervincenzo;Kovacevic, Jelena
    • Smart Structures and Systems
    • /
    • 제13권5호
    • /
    • pp.849-868
    • /
    • 2014
  • An indirect approach is explored for structural health bridge monitoring allowing for wide, yet cost-effective, bridge stock coverage. The detection capability of the approach is tested in a laboratory setting for three different reversible proxy types of damage scenarios: changes in the support conditions (rotational restraint), additional damping, and an added mass at the midspan. A set of frequency features is used in conjunction with a support vector machine classifier on data measured from a passing vehicle at the wheel and suspension levels, and directly from the bridge structure for comparison. For each type of damage, four levels of severity were explored. The results show that for each damage type, the classification accuracy based on data measured from the passing vehicle is, on average, as good as or better than the classification accuracy based on data measured from the bridge. Classification accuracy showed a steady trend for low (1-1.75 m/s) and high vehicle speeds (2-2.75 m/s), with a decrease of about 7% for the latter. These results show promise towards a highly mobile structural health bridge monitoring system for wide and cost-effective bridge stock coverage.