Damage detection plays a very important role to the maintenance of bridge structures. Traditional damage detection methods are usually based on structural dynamic properties, which are acquired from pre-installed sensors on the bridge. This is not only time-consuming and costly, but also suffers from poor sensitivity to damage if only natural frequencies and mode shapes are concerned in a noisy environment. Recently, the idea of using the dynamic responses of a passing vehicle shows a convenient and economical way for damage detection of bridge structures. Inspired by this new idea and the well-established tap test in the field of non-destructive testing, this paper proposes a new method for obtaining the damage information through the acceleration of a passing vehicle enhanced by a tapping device. Since no finger-print is required of the intact structure, this method can be easily implemented in practice. The logistics of this method is illustrated by a vehicle-bridge interaction model, along with the sensitivity analysis presented in detail. The validity of the method is proved by some numerical examples, and remarks are given concerning the potential implementation of the method as well as the directions for future research.
본 논문에서는 YOLOv4를 이용하여 차량의 부위별 파손현황을 검출하는 기법을 제안한다. 제안 알고리즘은 YOLOv4를 통해 차량의 부위와 파손을 각각 학습시킨 후 검출되는 바운딩 박스의 좌표 정보들을 추출하여 파손과 차량부위의 포함관계를 판단하는 알고리즘을 적용시켜 부위별 파손현황을 도출한다. 또한 성능비교의 객관성을 위하여 동일분야의 VGGNet을 이용한 기법, 이미지 분할과 U-Net 모델을 이용한 기법, Weproove.AI 딥러닝 모델 등을 대조 모델로 포함한다. 이를 통하여 제안 알고리즘의 성능을 비교, 평가하고 검출 모델의 개선 방안을 제안한다.
For health monitoring purpose usually the structure is instrumented with a large scale and multichannel measurement system. In case of highway bridges, operating vehicle could be utilized to reduce the number of measuring devices. First this paper presents a static damage detection algorithm of using operating vehicle load. The technique has been validated by finite element simulation and simple laboratory test. Next the paper presents an approach of using this technique to field application. Here operating vehicle load data has been used by instrumenting the bridge at single location. This approach gives an upper hand to other sophisticated global damage detection methods since it has the potential of reducing the measuring points and devices. It also avoids the application of artificial loading and interruption of any traffic flow.
주행 중인 자동차 타이어의 손상을 검출하기 위해 타이어에서 발생하는 초음파 신호에 대한 스플릿 스펙트럼 처리 알고리즘을 연구하였다. 스플릿 스펙트럼의 최대값을 추정하는 알고리즘을 사용하여 정상적인 타이어와 손상 물질에 의해 손상된 타이어에 대한 처리 결과를 비교하였다. 자기상관함수를 이용한 결과, 실험에 사용된 손상된 타이어에서는 주행속도 50km/h 일 때 162.9ms, 100km/h 일 때 84.81ms 주기로 손상 특이점을 검출 할 수 있었으며, 이에 의해 자동차 주행속도에 따른 손상 특징 점의 주기성을 이용하여 손상 물질에 의한 타이어의 손상 판단이 가능하였다.
연구목적: 본 연구에서는 무인이동체를 활용한 철도교량의 외관조사 점검을 보다 효율적이고 신뢰성 있게 점검을 위하여 무인이동체를 통해 촬영된 이미지를 바탕으로 다양한 방식의 딥러닝 기반 자동 손상 분석기술을 검토하였다. 연구방법: 취득된 이미지를 바탕으로 손상항목을 정의하고 학습데이터로 추출하여 딥러닝 분석 모델을 생성하였다. 그리고 철도교량의 외관 손상 중 균열, 콘크리트 박리·박락, 누수, 철근노출에 대한 손상 이미지를 학습한 모델을 적용하여 자동 손상 분석 결과로 테스트하였다. 연구결과: 분석 결과 평균 95%이상 검측 재현율을 도출하는 분석 기법을 검토할 수 있었다. 이와 같은 분석 기술은 기존 육안점검 결과 대비 보다 객관적이고 정밀한 손상 검측이 가능하다. 결론: 본 연구를 통해 개발된 기술을 통해 철도 유지관리 분야에서 무인이동체를 활용한 정기점검 시 자동손상분석을 통한 객관적인 결과도출과 기존 대비 소요시간, 비용저감이 가능할 것으로 기대된다.
In this paper, a theoretical and numerical study on bridge simultaneous damage detection procedure for identifying both the system parameters and input excitation mass, are presented. This method is called 'Adjoint Variable Method' which is an iterative gradient-based model updating method based on the dynamic response sensitivity. The main advantage of proposed method is inclusion of an analytical method to augment the accuracy and speed of the solution. Moving mass is a model which takes into account the inertia effects of the vehicle. This interaction model is a time varying system and proposed method is capable of detecting damage in this variable system. Robustness of proposed method is illustrated by correctly detection of the location and extension of predetermined single, multiple and random damages in all ranges of speed and mass ratio of moving vehicle. A comparison study of common sensitivity and proposed method confirms its efficiency and performance improvement in sensitivity-based damage detection methods. Various sources of errors including the effects of measurement noise and initial assumption error in stability of method are also discussed.
Ordinary reinforced concrete (RC) and prestressed concrete bridges are two popular and typical types of short- and medium-span bridges that accounts for the vast majority of all existing bridges. The cost of maintaining, repairing or replacing degraded existing RC bridges is immense. Detecting the abnormality of RC bridges at an early stage and taking the protective measures in advance are effective ways to improve maintenance practices and reduce the maintenance cost. This study proposes a systematic method from influence line (IL) identification to damage detection with applications to RC bridges. An IL identification method which integrates the cubic B-spline function with Tikhonov regularization is first proposed based on the vehicle information and the corresponding moving vehicle induced bridge response time history. Subsequently, IL change is defined as a damage index for bridge damage detection, and information fusion technique that synthesizes ILs of multiple locations/sensors is used to improve the efficiency and accuracy of damage localization. Finally, the feasibility of the proposed systematic method is verified through experimental tests on a three-span continuous RC beam. The comparison suggests that the identified ILs can well match with the baseline ILs, and it demonstrates that the proposed IL identification method has a high accuracy and a great potential in engineering applications. Results in this case indicate that deflection ILs are superior than strain ILs for damage detection of RC beams, and the performance of damage localization can be significantly improved with the information fusion of multiple ILs.
With increasing traffic volumes and rising vehicle traffic, especially in cities, the number of pedestrian bridges has also increased significantly. Like all other structures, pedestrian bridges also suffer damage. In order to increase the safety of pedestrians, it is necessary to identify existing damage and to repair them to ensure the safety of the bridge structures. Owing to the shortcomings of local methods in identifying damage and in order to enhance the reliability of detection and identification of structural faults, signal methods have seen significant development in recent years. In this research, a new methodology, based on cone-shaped kernel distribution with a new damage index, has been used for damage detection in pedestrian truss bridges. To evaluate the proposed method, the numerical models of the Warren Type steel truss and the Arregar steel footbridge were used. Based on the results, the proposed method and damage index identified the damage and determined its location with a high degree of precision. Given the ease of use, the proposed method can be used to identify faults in pedestrian bridges.
최근 증가하고 있는 도로 위 적재 불량 화물차는 비정상적인 무게 중심으로 인해 물체 낙하, 도로 파손, 연쇄 추돌 등 교통안전에 위해가 되고 한번 사고가 발생하면 큰 피해가 유발할 수 있다. 하지만 이러한 비정상적인 무게 중심은 적재 불량 차량 인식을 위한 주행 중 축중 시스템으로는 검출이 불가능하다는 한계점이 있다. 본 논문에서는 이러한 사회 문제를 야기하는 적재 불량 차량을 관리하기 위한 객체 인식 기반 AI 모델을 구축하고자 한다. 또한 AI-Hub에 공개된 약 40만 장의 데이터셋을 비교 분석하여 전처리를 통해 적재 불량 차량 검지 AI 모델의 성능을 향상시키는 방법을 제시한다. 또한 객체 추적을 통해 실시간 검지를 수행하는 방법을 제안한다. 이를 통해, 원시 데이터를 활용한 학습 성능 대비 약 23% 향상된 적재 불량 차량의 검출 성능을 나타냄을 보였다. 본 연구 결과를 통해 공개 빅데이터를 보다 효율적으로 활용하여, 객체 인식 기반 적재 불량 차량 탐지 모델 개발에 적용할 수 있을 것으로 기대된다.
Cerda, Fernando;Chen, Siheng;Bielak, Jacobo;Garrett, James H.;Rizzo, Piervincenzo;Kovacevic, Jelena
Smart Structures and Systems
/
제13권5호
/
pp.849-868
/
2014
An indirect approach is explored for structural health bridge monitoring allowing for wide, yet cost-effective, bridge stock coverage. The detection capability of the approach is tested in a laboratory setting for three different reversible proxy types of damage scenarios: changes in the support conditions (rotational restraint), additional damping, and an added mass at the midspan. A set of frequency features is used in conjunction with a support vector machine classifier on data measured from a passing vehicle at the wheel and suspension levels, and directly from the bridge structure for comparison. For each type of damage, four levels of severity were explored. The results show that for each damage type, the classification accuracy based on data measured from the passing vehicle is, on average, as good as or better than the classification accuracy based on data measured from the bridge. Classification accuracy showed a steady trend for low (1-1.75 m/s) and high vehicle speeds (2-2.75 m/s), with a decrease of about 7% for the latter. These results show promise towards a highly mobile structural health bridge monitoring system for wide and cost-effective bridge stock coverage.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.