• Title/Summary/Keyword: Vehicle Behavior

Search Result 978, Processing Time 0.029 seconds

A Study on the Installation of a Barrier to Prevent Large-Scale Traffic Accidents in Tunnel

  • Baek, Se-Ryong;Yoon, Jun-Kyu;Lim, Jong-Han
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.161-168
    • /
    • 2019
  • Traffic accidents in tunnel can lead to large traffic accidents due to narrow and dark road characteristics. Therefore, special care of the driver is required when is driving in a tunnel. However, accidents can happen at any time. In the event of an accident, a narrow road structure may lead to a second accident. Therefore, all facilities installed inside the tunnel should be allowed to minimize damage in the event of an accident. We confirmed the safety of the collision target through the action of the sedan, Sport Utility Vehicle (SUV) and truck when the vehicle crashed into a stairway installed on the tunnel emergency escape route, and when a concrete barrier or guard rail was installed in front of the stairway. The behavior of the vehicle has resulted in a total of three results: rollover or rollover, change of speed and angle of the vehicle after collision. The sedan and SUV were the most secure when colliding with the guardrail, but considering the truck as a whole, concrete barriers were judged to be the most suitable for minimizing damage from the first accident and reducing the risk of the second accident.

Development of a New Bushing Model for Vehicle Suspension Module Design (승용차 현가모듈 설계를 위한 새로운 부싱모델 개발)

  • Ok, Jin-Kyu;Park, Dong-Woon;Yoo, Wan-Suk;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.143-150
    • /
    • 2006
  • In this paper, a new bushing model for vehicle dynamics analysis using Bouc-Wen hysteretic model is proposed. Bushing components of a vehicle suspension system are tested to capture the nonlinear behavior of rubber bushing elements using the MTS 3-axes rubber test machine. The results of the tests are used to define parameters in Bouc-Wen bushing model, which was employed to represent the hysteretic characteristics of the bushing. Bushing parameters are obtained by using genetic algorithms and sensitivity analysis of parameters are also carried out. ADAMS program was used for the identification process and VisualDOC program was employed to find the optimal parameters. A half-car simulation was carried out to show the usefulness of the developed bushing model.

A Distributed LT Codes-based Data Transmission Technique for Multicast Services in Vehicular Ad-hoc Networks

  • Zhou, Yuan;Fei, Zesong;Huang, Gaishi;Yang, Ang;Kuang, Jingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.748-766
    • /
    • 2013
  • In this paper, we consider an infrastructure-vehicle-vehicle (I2V2V) based Vehicle Ad-hoc Networks (VANETs), where one base station multicasts data to d vehicular users with the assistance of r vehicular users. A Distributed Luby Transform (DLT) codes based transmission scheme is proposed over lossy VANETs to reduce transmission latency. Furthermore, focusing on the degree distribution of DLT codes, a Modified Deconvolved Soliton Distribution (MDSD) is designed to further reduce the transmission latency and improve the transmission reliability. We investigate the network behavior of the transmission scheme with MDSD, called MDLT based scheme. Closed-form expressions of the transmission latency of the proposed schemes are derived. Performance simulation results show that DLT based scheme can reduce transmission latency significantly compared with traditional Automatic Repeat Request (ARQ) and Luby Transform (LT) codes based schemes. In contrast to DLT based scheme, the MDLT based scheme can further reduce transmission latency and improve FER performance substantially, when both the source-to-relay and relay-to-sink channels are erasure channels.

Performance Evaluation of 6WD Military Vehicle Featuring MR Damper (MR 댐퍼를 적용한 6WD 군용차량의 성능평가)

  • Ha, Sung-Boon;Choi, Seung-Bok;Rhee, Eun-Jun;Kang, Pil-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.460-465
    • /
    • 2008
  • This paper proposes a new type of MR (magentorheological) fluid based suspension system and applies it to military vehicle for vibration control. The suspension system consists of gas spring and MR damper. The nonlinear behavior of spring characteristics is evaluated with respect to the wheel travel and damping force model due to viscosity and yield stress of MR fluid is derived. Subsequently, a military vehicle of 6WD is adopted for the integration of the MR suspension system and its nonlinear dynamic model is establishes by considering vertical, pitch and roll motion. Then, a sky-hook controller associated with semi-active actuating condition is designed to reduce the vibration. In order to demonstrate the effectiveness of the proposed MR suspension system, computer simulation is undertaken showing vibration control performance such as roll angle and pitch angle evaluated under bump and random road profiles.

  • PDF

Effect of Sublimable Vehicle Compositions in the Camphor-Naphthalene System on the Pore Structure of Porous Cu-Ni (Camphor-Naphthalene 동결제 조성이 Cu-Ni 다공체의 기공구조에 미치는 영향)

  • Kwon, Na-Yeon;Suk, Myung-Jin;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.22 no.5
    • /
    • pp.362-366
    • /
    • 2015
  • The effect of sublimable vehicle composition in the camphor-naphthalene system on the pore structure of porous Cu-Ni alloy is investigated. The CuO-NiO mixed slurries with hypoeutectic, eutectic and hypereutectic compositions are frozen into a mold at $-25^{\circ}C$. Pores are generated by sublimation of the vehicles at room temperature. After hydrogen reduction at $300^{\circ}C$ and sintering at $850^{\circ}C$ for 1 h, the green body of CuO-NiO is completely converted to porous Cu-Ni alloy with various pore structures. The sintered samples show large pores which are aligned parallel to the sublimable vehicle growth direction. The pore size and porosity decrease with increase in powder content due to the degree of powder rearrangement in slurry. In the hypoeutectic composition slurry, small pores with dendritic morphology are observed in the sintered Cu-Ni, whereas the specimen of hypereutectic composition shows pore structure of plate shape. The change of pore structure is explained by growth behavior of primary camphor and naphthalene crystals during solidification of camphor-naphthalene alloys.

Influence of the Speeds on the Curve Squeal Noise of Railway Vehicles (철도차량의 곡선부 스킬 소음에 대한 속도의 영향)

  • Lee, Chan-Woo;Kim, Jae-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.572-577
    • /
    • 2011
  • Curve squealing of inter-city railway vehicle is a noise with high acoustic pressure and rather narrow frequency spectra. This noise turns out to be very annoying for the people living in the neighborhood of locations and the passenger in railway vehicle where this phenomenon occurs. Squealing is caused by a self-exited stick-slip oscillation in the wheel-rail contact. Curve squeal noise of railway vehicles that passed by a factor of the speed limit, so to overcome in order to improve running performance is one of the largest technology. In the present paper, characteristic of squeal noise behavior at the Hanvit-200 tilting train test-site. Curve squealing of railway wheels/rail contact occurs in R400~ R800 curves with a frequency range of about 4~11 kHz. If the curve is less than the radius of wheel frail contact due to |left-right| noise level difference (dBA) shows a significant effect of squeal noise were more likely.

An Analysis of Traffic Accident Injury Severity for Elderly Driver on Goyang-Si using Structural Equation Model (구조방정식을 이용한 고령운전자 교통사고 인적 피해 심각도 분석 (고양시를 중심으로))

  • Kim, Soullam;Yun, Duk Geun
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.117-124
    • /
    • 2015
  • PURPOSES : The purpose of this study is to verify traffic accident injury severity factors for elderly drivers and the relative relationship of these factors. METHODS : To verify the complicated relationship among traffic accident injury severity factors, this study employed a structural equation model (SEM). To develop the SEM structure, only the severity of human injuries was considered; moreover, the observed variables were selected through confirmatory factor analysis (CFA). The number of fatalities, serious injuries, moderate injuries, and minor injuries were selected for observed variables of severity. For latent variables, the accident situation, environment, and vehicle and driver factors were respectively defined. Seven observed variables were selected among the latent variables. RESULTS : This study showed that the vehicle and driver factor was the most influential factor for accident severity among the latent factors. For the observed variable, the type of vehicle, type of accident, and status of day or night for each latent variable were the most relative observed variables for the accident severity factor. To verify the validity of the SEM, several model fitting methods, including ${\chi}^2/df$, GFI, AGFI, CFI, and others, were applied, and the model produced meaningful results. CONCLUSIONS : Based on an analysis of results of traffic accident injury severity for elderly drivers, the vehicle and driver factor was the most influential one for injury severity. Therefore, education tailored to elderly drivers is needed to improve driving behavior of elderly driver.

Performance Evaluation of 6WD Military Vehicle Featuring MR Damper (MR댐퍼를 적용한 6WD 군용차량의 성능평가)

  • Ha, Sung-Hoon;Choi, Seung-Bok;Rhee, Eun-Jun;Kang, Pil-Soon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.1
    • /
    • pp.17-23
    • /
    • 2009
  • This paper proposes a new type of MR(magnetorheological) fluid based suspension system and applies it to military vehicle for vibration control. The suspension system consists of gas spring and MR damper. The nonlinear behavior of spring characteristics is evaluated with respect to the wheel travel and damping force model due to viscosity and yield stress of MR fluid is derived. Subsequently, a military vehicle of 6WD is adopted for the integration of the MR suspension system and its nonlinear dynamic model is established by considering vertical, pitch and roll motion. Then, a sky-hook controller associated with semi-active actuating condition is designed to reduce the imposed vibration. In order to demonstrate the effectiveness of the proposed MR suspension system, computer simulation is undertaken showing vibration control performance such as roll angle and pitch angle evaluated under bump and random road profiles.

An Experimental Study on the Transient Behavior of Vehicle Rollover (차량 롤전복의 과도거동에 관한 시험적 연구)

  • Lee, Myung-Su;Kim, Sang-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.113-121
    • /
    • 2011
  • Rollover accident is one of the serious traffic accident and rollover accident takes high portion of all accident. The most common type of rollover is a tripped rollover which occupy 95% of all type of single-vehicle rollover. Tripped rollover occurs when a vehicle leaves normal road way and tripped by loose gravel, soil of fixed object such as guard rail, curbs and ditches. And the rest of the type of rollover is un-tripped rollover. An un-tripped rollovers that occurs during high-speed collision avoidance maneuvers. In this paper, presents the explanation of the un-tripped rollover test method and procedure, additionally this paper deals with various occurrence in the un-tripped test such as occurring excessive tire camber in the un-tripped test, tire side-wall contact with road surface and roll oscillation. And this paper analyzes the analysis of the roll rate amplitude in specific frequency through the FFT (Fast Fourier Transform) and the roll angle at the steering reverse timing which is the Fishhook test roll rate feedback time. Finally, this paper analyzes the relations between the estimated steady state roll gain and rollover stability.

A Study on the Empirical Modeling of Rubber Bushing for Dynamic Analysis (동역학 해석을 위한 고무부싱의 실험적 모델링에 대한 연구)

  • Sohn, Jeong-Hyun;Baek, Woon-Kyung;Kim, Dong-Jo
    • Elastomers and Composites
    • /
    • v.39 no.2
    • /
    • pp.121-130
    • /
    • 2004
  • A rubber bushing connects the components of the vehicle each other and reduce the vibration transmitted to the chassis frame. A rubber bushing has the nonlinear characteristics for both the amplitude and the frequency and represents the hysteretic responses under the periodic excitation. In this paper, one-axis durability test is performed to describe the mechanical behavior of typical vehicle elastomeric components. The results of the tests are used to develop m empirical bushing model with an artificial neural network. The back propagation algerian is used to obtain the weighting factor of the neural network. A numerical example is carried out to verify the developed bushing model and the vehicle simulation is performed to show the fidelity of proposed model.