• Title/Summary/Keyword: Vehicle Air-condition

Search Result 160, Processing Time 0.023 seconds

Experimental study on Thermal Comfort of Electric Vehicle Occupants Using Local Proximity Heating Module (국부 근접 난방 모듈을 이용한 전기차 탑승자의 열쾌적성에 대한 실험적 연구)

  • Chae-Yeol Lee;Jong-Han Im;Jae-Wook Lee;Sang-Hee Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.655-663
    • /
    • 2024
  • In order to meet the technological demand for indoor heating systems that ensure winter thermal comfort during the transition from internal combustion engines to electrification, a localized proximity heating module using surface heating elements was developed. The operational performance of heating module was tested in the low temperature chamber. The experiment conditions were varied by changing the chamber temperature (-10, 0℃), the air flow rate (6.2, 6.0, 4.2m3/h), the heater power (100, 80, 60, 40W). Thermal comfort model was confirmed using the CBE Thermal Comfort Tool applying ASHRAE standard 55. Under -10℃ condition, thermal comfort was satisfied at 23.4, 23.2℃ at power of 100W and air flow rate 6.0, 4.6m3/h. Under 0℃ condition, at power of 80W, air flow rate 6.2, 6.0m3/h, and at power of 60W, air flow rate 4.6m3/h showed results of 25.7, 26.1, 23.0℃, respectively, satisfying thermal comfort. This study analyzed the operating performance of the local proximity heating module in the low temperature chamber and applied thermal comfort model to prove applicability of local proximity heating module using surface heating elements and how to utilize the thermal comfort model.

Evaluating System for Fuel Injector with the Condition of a Driving Vehicle Mode Using an ECU HILS (ECU HILS를 이용한 실차 주행 조건에서의 인젝터 평가시스템)

  • Lee, Choong-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.812-828
    • /
    • 2010
  • A fuel injection system using an ECU HILS as an alternate to a vehicle test for the fuel injectors was developed. The throttle position, vehicle speed, engine speed, crank position, cam position, intake air flow, and several other sensor signals that are supplied to the ECU were measured and recorded as a data file for a vehicle driven in the FTP-75 mode in a chassis dynamometer. Electric signals that are equivalent to the sensor signals from the vehicle are reconstructed from the recorded data file using data acquisition boards, microprocessors, and computers. All sensor signals are supplied to the ECU with synchronized timing using a computer program. The findings show that the cost and time of vehicle experiments can be reduced using the ECU HILS system. Moreover, the repeatability of the generation of sensor signals can enhance the accuracy of a range of experiment related to vehicle testing. An ECU scanner that scans the sensor signals that are input to the ECU through a serial port was used to assess the accuracy of the reconstructed signals. The scanning results show good agreement with the reconstructed input signals. Injectors were connected to the ECU HILS system and were driven by the system to measure the quantity of injected fuel.

Finite Element Analysis for the Swaging Process of an Automotive Air-conditioning Hose Assembly (자동차용 에어컨 호스 조립품의 스웨이징 공정에 대한 유한요소해석)

  • Baek, J.K.;Kim, B.T.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.54-60
    • /
    • 2010
  • The automotive air conditioning hose is used for connecting the components of air conditioner in a vehicle. The hose is usually manufactured by the swaging process to connect the rubber hose with the metal fitting at the end of the hose. The swaging process leads to various stress and strain configurations in the hose, which give a critical effect on the hose performance. In this paper, the deformation characteristics of an air-conditioning hose during the swaging process were analyzed using the nonlinear finite element method. Especially the rubber layers, which are contacted with the metal fittings, were divided with finer mesh density than the reinforcement braids to increase the solution accuracy. The material properties were obtained from experimental data, and the contact conditions were used in consideration of the real manufacturing process.

Particle emission characteristics of gasoline and bio ethanol blend in the engine and vehicle mode test (가솔린과 바이오 에탄올 혼합 연료의 엔진 및 차량 모드 주행시의 입자상 물질 배출 특성)

  • Ko, A-Hyun;Lee, Hyung-Min;Choi, Kwan-Hee;Park, Sim-Soo;Lee, Young-Jae
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3102-3107
    • /
    • 2008
  • This paper was focused on the particulate matter (PM) on the gasoline and bio ethanol. Bio ethanol as a clean fuel is considered one of the alternative fuels that decreased the PM emission from the vehicle. Particle formation in SI engine was depended on the fuel and engine operating condition. In this paper, Particle number concentration behaviors were analyzed by DMS500 (Differential Mobility Spectrometer) and CPC (Condensation Particle Counter) instrument which was recommended by PMP (Particle Measurement Programme). Particle emissions were measured with various engine operating variables such as air excess ratio ($\lambda$), spark timing and intake valve opening (IVO) at part load condition. In vehicle test, the number of particulate matter was analyzed with golden particle measurement system, which was consist of CVS (Constant Volume Sampler), particle number counter and particle number diluter.

  • PDF

A Study on the Clamping Force of an Automotive Air-conditioning Hose according to the Friction Coefficient (마찰계수를 고려한 자동차용 에어컨 호스의 체결력에 관한 연구)

  • Baek, Jae-Kwon;Kim, Byung-Tak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.39-46
    • /
    • 2011
  • The automotive air conditioning hose is used for connecting the components of air conditioner in a vehicle. The hose is usually manufactured by the swaging process to connect the rubber hose with the metal fitting at the end of the hose. In case that the clamping force is small, the refrigerant gas in the hose can leak locally under the severe operating circumstances. The practical test of clamping force is performed by means of the measurement of separation force. In this study, the swaging process of a hose is simulated with the finite element method, to investigate the effect of friction coefficient on the clamping force. The contact condition is used in consideration of real manufacturing process, and the material properties for the Mooney-Rivlin model is obtained by the experimental results. The result interpretations are focused on the contact forces, which is displayed graphically with respect to friction coefficient, on the surfaces between the hose and the metal fittings.

PIV Measurements of Ventilation Flow from the Air Vent of a Real Passenger Car (거대 화상용 PIV 시스템을 이용한 실차 내부 공기벨트 토출흐름의 속도장 측정 연구)

  • Lee, Jin-Pyung;Kim, Hak-Lim;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.1
    • /
    • pp.3-8
    • /
    • 2009
  • Most vehicles have a heating, ventilating and air conditioning (HVAC) device to control the thermal condition and to make comfortable environment in the passenger compartment. The improvement of ventilation flow inside the passenger compartment is crucial for providing comfortable environment. For this, better understanding on the variation of flow characteristics of ventilation air inside the passenger compartment with respect to various ventilation modes is strongly required. Most previous studies on the ventilation flow in a car cabin were carried out using computational fluid dynamics (CFD) analysis or scale-down water-model experiments. In this study, whole ventilation flow discharged from the air vent of a real passenger car was measured using a special PIV (particle image velocimetry) system for large-size FOV (field of view). Under real recirculation ventilation condition, the spatial distributions of stream-wise turbulence intensity and mean velocity were measured in the vortical panel-duct center plane under the panel ventilation mode. These experimental data would be useful for understanding the detailed flow structure of real ventilation flow and validating numerical predictions.

The research on reducing aeroacoustic noise using by Pneumatic Auxiliary Unit (공압장치를 이용한 공력 소음 저감 연구)

  • CHUNG, kyoungseoun;CHO, hyeongjin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.119-123
    • /
    • 2013
  • We conduct the research for reducing aeroacoustic noise occurred when a vehicle operates in high speed situation without modifying the structural configuration such as deforming A-pillar's side curvature. We introduce PAU (Pneumatic Auxiliary Unit) which is a sort of air duct using intake air through radiator grill. According to our research, we can reduce overall noise levels around the surface of HSM (Hyundai Simplified Model). When a vehicleruns 100km/s, area-weighted acoustic power level (AWAPL) indicates 33dB without PAU. However with PAU, coverall AWAPL is decreased to 29dB which means we can improvesilentness approximately 12% compared to ordinary case. Moreover we conduct similar implementation to steering situation especially about yawing. In varioussituations, -10, 0, 10 degree of yawing, we observe 10% reduction in the upstream region of HSM but little increase in downstream region. It seems that inlet air overlap turbulent kinetic energy to surrounding flow. Even though downstream region's noise is louder than upstream region, overall AWAPL is still lower than conventional condition. We also apply this scheme to the real vehicle situation, then we get reasonable output which can support our research outputs.

  • PDF

Modeling and coupling characteristics for an airframe-propulsion-integrated hypersonic vehicle

  • Lv, Chengkun;Chang, Juntao;Dong, Yilei;Ma, Jicheng;Xu, Cheng
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.6
    • /
    • pp.553-570
    • /
    • 2020
  • To address the problems caused by the strong coupling of an airbreathing hypersonic vehicle's airframe and propulsion to the integrated control system design, an integrated airframe-propulsion model is established, and the coupling characteristics between the aircraft and engine are analyzed. First, the airframe-propulsion integration model is established based on the typical nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle and the one-dimensional dual-mode scramjet model. Thrust, moment, angle of attack, altitude, and velocity are used as transfer variables between the aircraft model and the engine model. The one-dimensional scramjet model can accurately reflect the working state of the engine and provide data to support the coupling analysis. Second, owing to the static instability of the aircraft model, the linear quadratic regulator (LQR) controller of the aircraft is designed to ensure attitude stability and height tracking. Finally, the coupling relationship between the aircraft and the engine is revealed through simulation examples. The interaction between vehicle attitude and engine working condition is analyzed, and the influence of vehicle attitude on engine safety is considered. When the engine is in a critical working state, the attitude change of the aircraft will not affect the engine safety without considering coupling, whereas when coupling is considered, the attitude change of the aircraft may cause the engine unstart, which demonstrates the significance of considering coupling characteristics.

Research on Actual Vehicle Application of Composite Regenerative DPF for Reducing Exhaust Gases of Light-duty Diesel Engines (소형디젤기관의 배출가스 저감을 위한 복합재생방식 DPF의 실차적용 연구)

  • Yun chul Lee;Sang ki Oh
    • Journal of ILASS-Korea
    • /
    • v.29 no.2
    • /
    • pp.68-74
    • /
    • 2024
  • As awareness of environmental pollution problems increases worldwide, interest in air pollutants is increasing. In particular, NOx and PM, which are major pollutants in diesel vehicles, are contributing significantly to emissions. As a result, its importance is increasing. In this study, based on research results applied to large diesel vehicles, the problem of natural regeneration caused by low exhaust gas temperature during low speed and low load operation is solved by applying a complex regeneration DPF that is not affected by temperature conditions to small diesel vehicles. The feasibility of application to small diesel vehicles was reviewed by measuring the emission reduction efficiency. As a result of the engine test, the power reduction rate and fuel consumption rate before and after device installation under full load conditions were 2.9% decrease and 3.5% increase, respectively, satisfying the standard for a 5% reduction, and as a result of the regeneration equilibrium temperature (BPT) test, the regeneration temperature was 310℃. appeared at the level. The reduction efficiency test results for the actual vehicle durability test equipment showed 97.3% PM, 51.0% CO, and 31.1% HC, while the city commuter vehicle had PM 97.5%, CO 61.7%, HC 40.0%, and the school bus vehicle had PM 96.8%, CO 44.4%, HC 34.3%, and low-speed logistics vehicles showed a reduction efficiency of 98.2% for PM, 36.0% for CO, and 45.7% for HC. Based on the results of this study, in the future, it is necessary to secure DPF technology suitable for all vehicle types through actual vehicle application research on temperature condition-insensitive composite regenerative DPF for medium-sized vehicles.

Magnetic Interference on the Infrastructure for a Super-speed Tube Train

  • Lee, Hyung-Woo;Jang, Seung-Yup;Kang, Bu-Byoung;Cho, Su-Yeon;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.364-368
    • /
    • 2011
  • The super-speed tube train was introduced to increase the speed of ground transportation. It levitates magnetically and runs in a partial vacuum tube, which significantly reduces air resistance. However, strong magnetic force sufficient to propel the massive train can affect the infrastructure. The induced eddy current produces joule heat, and raises the inside temperature of the girder, which might lead to electrochemical corrosion on the girder, thereby weakening its durability. In this paper, the authors analyzed the magnetic flux and induced eddy current in the reinforced concrete girder by using three-dimensional FEM, particularly by varying the number of reinforcing steels of the upper flange of the girder to the condition of almost the same flexural strength and reinforcing steel amount.