• Title/Summary/Keyword: Vehicle Air-condition

Search Result 160, Processing Time 0.03 seconds

Study on Characteristics of Car Air-con Compressor Under Bench System Fuel Economy Simulation Condition (벤치 연비 모사 조건에서 차량용 에어컨 압축기의 특성에 관한 연구)

  • Yoo, Seong-Yeon;Kim, Young-Shin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.705-710
    • /
    • 2012
  • In this study, an experiment on an air conditioning test bench was performed to verify the possibility of fuel economy simulation for the SC03 mode, North America fuel economy certification mode with a/c on condition, one of the vehicle fuel economy evaluation modes. The air conditioning test bench used in this study had each chamber simulating the actual vehicle air conditioning system and the controlling temperature, humidity, and air flow velocity to reproduce environmental conditions. Reliable results were obtained about the compressor RPM and inlet air velocity in front of the condenser corresponding to vehicle speed and air velocity in front of the vehicle, respectively, in the simulation of the SC03 mode, previously performed in CWT, in an air conditioning test bench. It was also discovered that there was a distinct difference in the fuel economy depending on the difference in the compressor displacement in the simulation test of the SC03 mode in the air conditioning test bench under various displacement conditions of the compressor.

A Simulation Program for the Braking Characteristics of 8$\times$4 Vehicles (8$\times$4 차량의 제동특성 시뮬레이션 프로그램 개발)

  • 서명원;박윤기;권성진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.119-128
    • /
    • 2001
  • Recently safety systems for the commercial vehicle have been rapidly developed. However, we still have many problems in the vehicle stability and the braking performance. Especially, a commercial vehicle may meet a dangerous braking condition when the vehicle is lightly loaded or empty and the road is wet or slippery. To design the air brake system for commercial vehicles, since the air brake system has many design variables, there must have been intensive researches on a method how to prevent dynamic instability and how to maximize the vehicle deceleration. In this study, mathematical models about an 8$\times$4 vehicle and an air brake system including an ABS controller have been constructed for computer simulation. Also, simple examples are applied to show the usefulness of the computer program. Designers can use this simulation program for understanding the braking characteristics of 8$\times$4 commercial vehicles such as trajectory, braking distance, longitudinal deceleration, lateral deceleration, and yaw rate on various road conditions.

  • PDF

A Numerical Study on the Improvement of the Performance of a Vehicle Paint Drying Process (자동차 도장 건조 공정의 건조 성능 향상을 위한 수치해석 연구)

  • Choi, Jongrak;Hur, Nahmkeon;Kim, Dongchoul;Kim, Hee-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.12
    • /
    • pp.867-874
    • /
    • 2012
  • In the present study, three-dimensional transient numerical simulations were carried out to improve the performance of a vehicle paint drying process. In order to describe the movement of a vehicle, the techniques of moving boundary condition and multiple reference flames (MRF) were used. For the validation of the numerical analysis, the predicted temperature on the surface of a vehicle was compared to the experimental data, and a good agreement was achieved. With validated numerical procedure, various operating conditions of the temperature and the flow rate of the supply air were investigated to improve the drying performance of the facility. It is shown that the optimization of the operating condition can lead to energy savings and faster line speed of the production.

A Cumulative Injected Fuel Mass Measurement Under a Vehicle Driven Condition using Loadcells (차량주행 모사 조건에서 로드셀을 이용한 인젝터 누적 연료 분사량 측정)

  • Cho, Seung Keun;Lee, Choong Hoon
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • A gasoline injector rig which can measure cumulative injected fuel mass under a vehicle driving condition was developed. The measurement system consists of an engine control unit (ECU), data acquisition (DAQ) and injected fuel collection system using loadcells. By supplying reconstructed sensor signals which simulate the real vehicle's sensor signals to the ECU, the ECU drives injectors as if they were driven in the vehicle. The vehicle's performance was computer simulated by using $GT-Suite^{(R)}$ software based on both engine part load performance and automatic transmission shift map. Throttle valve position, engine and vehicle speed, air mass flow rate et al. were computer simulated. The used vehicle driving pattern for the simulation was FTP-75 mode. For reconstructing the real vehicle sensor signals which are correspondent to the $GT-Suite^{(R)}$ simulated vehicle's performance, the DAQ systems were used. The injected fuel was collected with mess cylinders. The collected fuel mass in the mess cylinder with elapsed time after starting FTP-75 driving mode was measured using loadcells. The developed method shows highly improved performance in fast timing and accuracy of the cumulative injected fuel mass measurement under the vehicle driven condition.

Research on the motion characteristics of a trans-media vehicle when entering water obliquely at low speed

  • Li, Yong-li;Feng, Jin-fu;Hu, Jun-hua;Yang, Jian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.188-200
    • /
    • 2018
  • This paper proposes a single control strategy to solve the problem of trans-media vehicle difficult control. The proposed control strategy is just to control the vehicle's air navigation, but not to control the underwater navigation. The hydrodynamic model of a vehicle when entering water obliquely at low speed has been founded to analyze the motion characteristics. Two methods have been used to simulate the vehicle entering water in the same condition: numerical simulation method and theoretical model solving method. And the results of the two methods can validate the hydrodynamic model founded in this paper. The entering water motion in the conditions of different velocity, different angle, and different attack angle has been simulated by this hydrodynamic model and the simulation has been analyzed. And the change rule of the vehicle's gestures and position when entering water has been obtained by analysis. This entering water rule will guide the follow-up of a series of research, such as the underwater navigation, the exiting water process and so on.

A Case Study on Failure and Analysis of Air Over Hydraulic Brake Line (공기 유압식 브레이크 라인 파손 사례 및 파손 분석 연구)

  • Park, Jeongman;Park, Jongjin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.2
    • /
    • pp.47-55
    • /
    • 2020
  • In this case study, the brake line failure of air over hydraulic(AOH) brake system is described. AOH brake system is applied to commercial vehicles between 5 to 8 tons. It consists of a hydraulic system using compressed air and operates the air master to form hydraulic pressure to transfer braking power to the wheels. When the brake lines of the system applied to vehicles with high load capacity are damaged, the braking force of one shaft is lost, and the braking distance increases rapidly, leading to a big accident. Failure of the brake line occurs due to various causes such as road surface fragmentation, corrosion of the line, and aged deterioration of air brake hose. The braking force could be decreased even when a very small break in the form of a pin-hole occurs. However, it is difficult to find a part where the thickness of the line is thin due to stone pecking or corrosion generated in the pin-hole formed on the brake line located under the lower part of the vehicle by the sensory evaluation or the conventional braking force test. Accordingly, it is necessary to analyze the condition and cause of the failure of the brake line more precisely when the accident investigation of the heavy vehicles, and also to examine the necessity of the advanced test for the aged brake line.

A Model for Estimating NOx Emission Concentrations on National Road (차량배출가스로 인한 일반국도 NOx 대기오염 추정 모형)

  • Oh, Ju-Sam;Kim, Byung-Kwan
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.121-129
    • /
    • 2011
  • The purpose of this study is to determine the relationship between observed traffic data and NOx concentrations from not an ideal condition but a real road in real-time. Also we aim to develop an estimation model for NOx emission concentrations due to vehicle exhaust gas, and it can be applied to monitor the degree of air pollution on National Road in real-time. To eliminate outliers which are occurred due to errors of equipments and other variables, we use the robust analysis and develop two models. which are considering and not considering wind impact. The result of this research can be used for understanding present condition of air pollution caused by vehicle exhaust gas and evaluating for environmental effects of transportation policy.

Base heat flux calculation along variable pressure ratio and base temperature condition on launch vehicle (압력 조건과 기저 온도 조건에 따른 기저 열단전단률 계산)

  • Kim, J.G.;Lee, J.W.;Choi, J.K.;Kim, K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.318-320
    • /
    • 2011
  • Numerical study was conducted to simulate the heat transfer on the real launch vehicle base. Three different base temperatures were chosen, to simulate the heat accumulation on the base. Moreover, six different pressure ratio conditions were used to express the different air conditions. As a result, the table that can used to estimate the base heat fox along the base temperature and pressure condition was made.

  • PDF

A NUMERICAL STUDY FOR IMPROVING PERFORMANCE ON PAINT DRYING SYSTEM OF A VEHICLE (차량 도장 건조 성능 향상을 위한 수치해석 연구)

  • Lee, Seung-Jae;Choi, Jong-Rak;Hur, Nahm-Keon;Kim, Hee-Soo
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.75-80
    • /
    • 2011
  • In this study, three-dimensional transient numerical simulations were carried out for a paint drying system of vehicle. The vehicle on assembly line passes through the drying system consisting of hot and cool air blow region. For the moving motion of the vehicle, moving of inlet boundary condition and MRF technique are used. The transient distribution of temperature and velocity in the drying system were predicted numerically. In order to validate the numerical results, transient distribution of the vehicle surface temperature was compared with experimental data, showing a good agreement. As a result of present study, optimal operating condition of the drying system are to be suggested.

Longitudinal Flight Dynamic Modeling and Stability Analysis of Flapping-wing Micro Air Vehicles (날갯짓 비행 로봇의 세로방향 비행 동역학 모델링 및 안정성 해석)

  • Kim, Joong-Kwan;Han, Jong-Seob;Kim, Ho-Young;Han, Jae-Hung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • This paper investigates the longitudinal flight dynamics and stability of flapping-wing micro air vehicles. Periodic external forces and moments due to the flapping motion characterize the dynamics of this system as NLTP (Non Linear Time Periodic). However, the averaging theorem can be applied to an NLTP system to obtain an NLTI (Non Linear Time Invariant) system which allows us to use a standard eigen value analysis to assess the stability of the system with linearization around a reference point. In this paper, we investigate the dynamics and stability of a hawkmoth-scale flapping-wing air vehicle by establishing an LTI (Linear Time Invariant) system model around a hovering condition. Also, a direct time integration of full nonlinear equations of motion of the flapping-wing micro air vehicle is conducted to see how the longitudinal flight dynamics appear in the time domain beyond the reference point, i.e. hovering condition. In the study, the flapping-wing air vehicle exhibited three distinct dynamic modes of motion in the longitudinal plane of motion: two stable subsidence modes and one unstable oscillatory mode. The unstable oscillatory mode is found to be a combination of a pitching velocity state and a forward/backward velocity state.